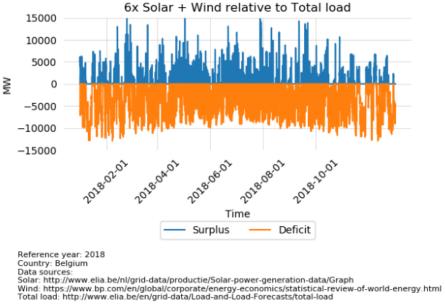
Initial Estimate of Energy Storage Required for Climate Leadership and Community Protection Act Solar and Wind Resources

White Paper Prepared for New York Department of Public Service Case 19-E-0530 Resource Adequacy Matters

> Prepared by Roger Caiazza Liverpool, NY 13090

Executive Summary

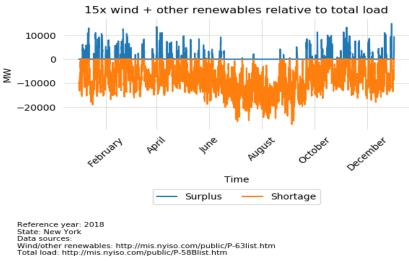
The notice soliciting comments on the Commission's resource adequacy inquiry included the question whether the State's energy policies and mandates are compatible with the NYISO's resource adequacy mechanisms. This White Paper provides an example of the kind of analysis that the Commission should do to determine if the State's energy policies and mandates are feasible. This is a necessary first step before even considering compatibility.


The Climate Leadership and Community Protection Act (CLCPA) includes a mandate to generate zero GHG emissions from electricity production by 2040. This analysis provides an initial estimate of the energy storage required to replace existing fossil fuel generation and the closure of Indian Point. It assumes that this generation will be replaced by proposed to date and additional wind and solar and arbitrarily picks an example deficit period when an aggressive solar and wind resource implementation scenario does not completely replace observed fossil generation.

There are a couple of take away points. Firstly, adding solar and wind capacity increases overall production and production peaks but does not increase output nearly as much during production valleys. Intuitively it is obvious that no amount of additional solar and wind capacity will help during a light wind night and this analysis graphically confirms that. Secondly, the amount of energy storage necessary to replace the deficits that result is significant. Because energy storage is expensive the expected costs are high. In this example it is estimated that the energy storage batteries alone will need to be over \$12 billion. That number does not include siting, application, interconnection and other developer costs and there was no attempt made to find the worst-case situation. Consequently, the number could well be an under-estimate of actual costs.

Approach

This analysis of real-world data evaluates the potential energy storage needed with a simple solar and wind capacity data analysis "model". The methodology was developed at the <u>Trust, yet Verify blog</u> and applied to Belgian data. In a <u>recent post</u> the author obtained Belgian solar generation, wind generation, and total load data for an entire year. The solar and wind data were summed together for every time period, in his case 15 minutes. Then he projected solar and wind by multiplying the observed sum by different values. In Figure 1 results for a six-fold increase are shown. Each period with surplus is in blue while deficits are gold. The results graphically show that additional intermittent wind and solar capacity increases production peaks but does not increase production nearly as much during production valleys. In addition, the results show that as capacity increases more balancing mechanisms will be required.


Figure 1: Increase Existing Solar and Wind Six Times Relative to Total Load in Belgium

https://trustyetverify.wordpress.com/

The Trust Yet Verify blog author did the same analysis for the 2018 historical data available at the New York Independent System Operator (NYISO) <u>real-time fuel mix data dashboard</u>. In Figure 2 his results for a fifteen-fold increase in New York wind and "other renewables" are shown. Comparing the Belgian and New York data shows that there is relatively more renewable energy available in Belgium. Despite increasing New York wind and "other renewable" capacity fifteen times there still are many periods of deficits. Further complicating things is the NYISO "other renewable" category that includes methane, refuse, or wood firing. Those other sources are not intermittent so we get mixed signals. Also note that Belgium has a winter peak whereas New York has a summer peak.

Figure 2: Increase Existing Wind and Other Renewables Relative to Total Load in New York.

The initial New York results indicated that August has significant deficits so I looked at August 2018 data myself in a multiple step process of increasing sophistication. My primary concern is the effect of the CLCPA on future capacity. Keep in mind that the target is to eliminate fossil fuel use so I first compared solar and wind only to fossil load, i.e., the output from the generators listed as fossil in the NYISO Gold Book Table III-3a: Capability by Zone and Type. Using the same approach as the <u>Trust, yet Verify blog</u> author but only using renewables to replace fossil load gives a similar result. Note that surpluses are blue and deficits are red. There are more surpluses simply because fossil load is less than total load. Note, however, that even if the wind and other renewable categories are increased 26 times the current rate existing fossil cannot be replaced without a lot of shortages.

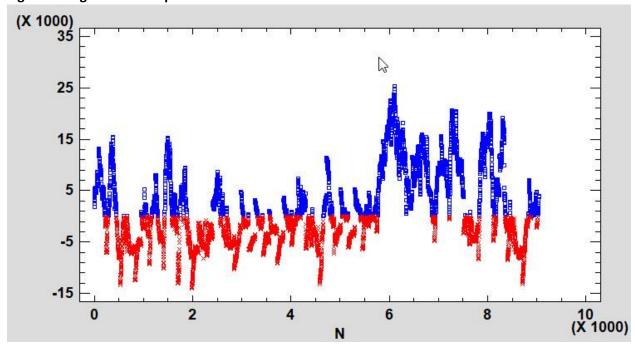


Figure 3: August 2018 Simple Model 26 * New York Wind + Other Renewables vs. fossil load

In my second step I refined the Trust, yet Verify simple model approach estimate by incorporating reasonable assumptions about the future using assumptions about the availability of nuclear, solar, and wind. The biggest future change is the forced shutdown of the Indian Pont nuclear facility in the next several years. Because wind and solar sources are intermittent the amount of time when they are available at full load is not constant. For example, solar availability varies during the day and over the month of August there will be periods when the wind is blowing less than optimal. On the other hand assuming that Indian Point capacity is not available at its rated capability is a reasonable assumption because it usually runs at full load except for maintenance.

This more refined analysis projects wind and solar capacity from an aggressive CLCPA implementation plan. In this analysis I want to make a projection that minimizes the amount of energy storage needed. I don't think there will be any significant increase in hydro or the other renewable category sources of methane, refuse, or wood firing and they are not intermittent so I made no changes to those categories. Because New York is shutting down 2,067 MW of nuclear at Indian Point in the next several years I subtracted that amount from every hour. I multiplied the existing onshore wind resource twenty times to estimate future availability. The CLCPA plan currently calls for 9,000 MW of off-shore wind power but

I doubled that amount. The CLCPA plan also calls for 6,000 MW of solar PV power but I doubled that amount too. In order to account for daylight I added 6,000 MW to every time period from 0700 to 1955. In order to account for wind intermittency I made some assumptions about availability and scaled the offshore wind resource down when the on shore resource was below half of the observed maximum.

The refined projections are shown in Figure 4. There are many periods of surpluses (all the renewables minus the existing fossil resource shown in blue) but there are still periods with deficits even with the best case assumptions about renewable availability. The key point is that over-building renewables still leaves the state with deficit periods that will have to be addressed by energy storage or by imports.

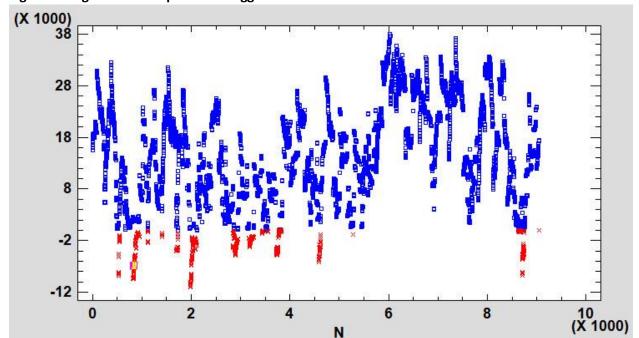


Figure 4: August 2018 Simple Model Aggressive CLCPA Resources vs. Fossil Load

Resource Adequacy

The Commission's resource adequacy inquiry has to address the ambitious CLCPA goal to use renewable electric energy to completely replace the current fossil fuel load. I believe this analysis demonstrates that the peak energy load may not be the critical planning scenario in the future. Instead, a calm night with low wind capacity and no solar capacity could be more important for planning even if the period does not have the highest load.

In my final application of this approach I looked at one historical deficit period. For this analysis it is assumed that the onshore wind presumption that additional wind would be proportional to existing wind is adequate. However, I did try to modify the offshore wind and the solar components. In order to do that I chose a shorter period and collected meteorological data to get a better estimate of potential solar and off-shore wind capacity. I arbitrarily chose a seven hour deficit period on the early morning of August 8, 2018 when winds were light and the sun was either not up or not at full strength to look at the potential magnitude of energy storage required to balance the deficit.

In order to characterize the off-shore wind potential I found a National Oceanic and Atmospheric Administration buoy located 30 NM south of Islip, NY (40°15'3" N 73°9'52" W) that I used to represent NY offshore wind resource availability. I downloaded hourly NDBC data for 2018 and scanned the data. As noted August 8 had light winds. The surface weather map for 8 August 2019 (Figure 5) shows that there was a large high pressure system dominating the east coast. As a result, I am confident that this buoy characterizes NY offshore wind speeds and thus the resource of NY offshore wind.

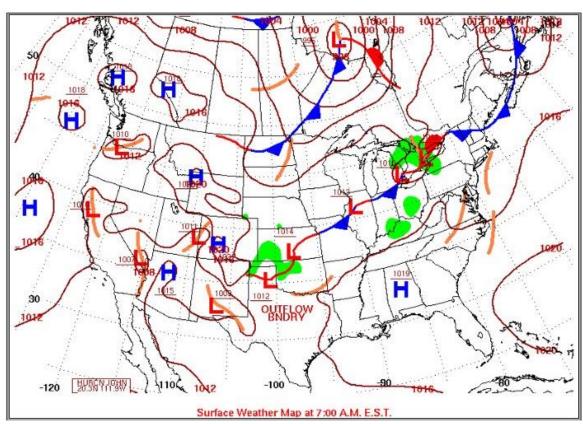


Figure 5 Surface Weather Map at 0700 EST on August 8, 2018

This analysis characterizes wind energy as a function of observed wind as follows. I found a wind turbine power output variation curve (Figure 6) and developed a simple equation for the curve and estimated that the output of 18,000 MW of New York offshore wind equals 1714 times the wind speed minus 6000. I assumed that the observed wind speed at the hub height is proportional to the logarithm of the height above ground. For the calculations I assumed a hub height of 85 m and a surface roughness of 0.0003 while the buoy anemometer height is 4 m. The NY offshore wind output capacity in MW was calculated for every hour using this approach.

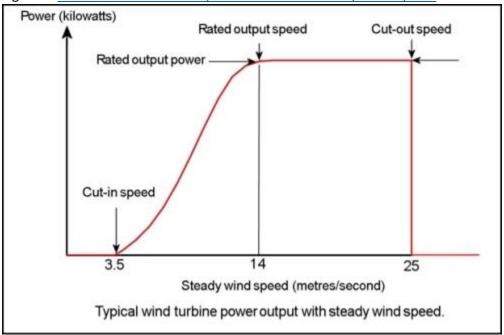


Figure 6: Wind Turbine Power Output Variation with Steady Wind Speed.

The solar output is a function of the observed solar irradiation in watts per meter squared. I assumed that 12,000 MW of solar capacity could be added in response to the CLCPA but that will be installed state wide. I downloaded solar irradiance maps from the NYS Mesonet <u>archive</u>. I accessed the solar irradiation map in the spatial analysis directory to get solar irradiation maps and as an added bonus the maps also include gridded winds. The gridded wind maps confirm that there were light winds across NY during this period. The NYS Mesonet Solar Irradiance Map shown in Figure 7 is an example of these maps and can be reproduced at this <u>link</u>. In this case there is a lot of solar irradiation variation across the state which makes a state-wide single estimate weak but sufficient for this first cut analysis. I estimate that the highest irradiance was 900 W/m2 and the lowest was around 100 W/m2. For this hour I guessed 600 W/m2 for the state. To do this better one would have to determine where the solar panels might be located to weight the observations. The available maps for the entire period are included in Energy Storage White Paper Appendix 1.

In order to calculate solar energy output, I assumed that the CLCPA solar buildout produces 12,000 MW when the solar irradiation equals 800 watts per square meter (the PVUSA test condition) and I did not account for any other factors such as the cell temperature or any losses. So my naïve formula for solar output was simply the observed input solar irradiation times 12,000 divided by 800. Note that this means solar output is greater than 12,000 MW whenever solar irradiation is greater than 800.

Figure 7: Solar Irradiance Map 8 August 2018 at 1525 UTC

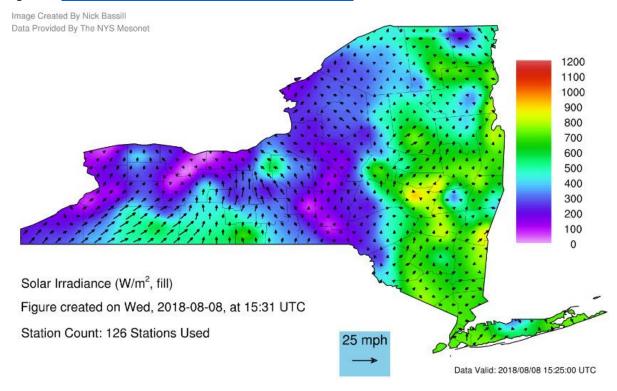


Table 1 lists 5-minute from the 0300 to 0955 EDT deficit period when the assumed aggressive CLCPA renewable capacity could not replace the observed fossil capacity and loss of the Indian Point nuclear facility. The first three data columns list the total NYISO state-wide generation load, the NYISO total load, and the fossil generation load. The next three columns list the onshore wind load, CLCPA solar load, and the CLCPE off-shore wind load calculated as described above. The column headed CLCPA renewables minus fossil and Indian Point is the margin between the aggressive CLCPA renewables and the observed fossil and Indian Point loads. The last three columns present the meteorological data used. In this period all the five-minute periods were negative. This illustrates my concern that the future CLCPA constraint may not be the peak load but instead a night-time low wind period.

Table 1: Deficit Example of Simple Model of Intermittent Wind and Solar Generation vs. Fossil Generation Replacement and Indian Point Shutdown

							•		Hub	
	Generation	Total	Fossil	Onshore		CLCPA solar	CLCPA Renewables -	Buoy Wind	Wind	Solar
	Load	Load	Load	Wind Load	Offshore	Load	Fossil and Indian Point	Speed	Speed	Irradiance
Date Time (EDT)	(MW)	(MW)	(MW)	(MW)	CLCPA wind	(MW)	(MW Margin)	(m/s)	(m/s)	W/m2
8/8/2018 03:00	14,873	16,821	7,364	960	7,596	0	-875	6.0	7.9	0
8/8/2018 03:05	15,067	16,781	7,467	960	7,596	0	-978	6.0	7.9	0
8/8/2018 03:10	15,017	16,734	7,456	960	7,596	0	-967	6.0	7.9	0
8/8/2018 03:15	15,004	16,754	7,456	920	7,596	0	-1,007	6.0	7.9	0
8/8/2018 03:20	14,999	16,747	7,476	840	7,596	0	-1,107	6.0	7.9	0
8/8/2018 03:25	14,983	16,744	7,495	800	7,596	0	-1,166	6.0	7.9	0
8/8/2018 03:30	14,928	16,722	7,477	800	7,596	0	-1,148	6.0	7.9	0
8/8/2018 03:35	14,914	16,689	7,451	780	7,596	0	-1,142	6.0	7.9	0
8/8/2018 03:40	14,911	16,619	7,468	720	7,596	0	-1,219	6.0	7.9	0
8/8/2018 03:45	14,911	16,659	7,485	660	7,596	0	-1,296	6.0	7.9	0
8/8/2018 03:50	14,948	16,610	7,519	600	7,596	0	-1,390	6.0	7.9	0
8/8/2018 03:55	14,941	16,614	7,510	600	7,596	0	-1,381	6.0	7.9	0
8/8/2018 04:00	14,934	16,655	7,512	700	1,024	0	-7,855	3.1	4.1	0
8/8/2018 04:05	14,984	16,604	7,516	840	1,024	0	-7,719	3.1	4.1	0
8/8/2018 04:10	15,014	16,608	7,524	880	1,024	0	-7,687	3.1	4.1	0
8/8/2018 04:15	15,104	16,674	7,560	840	1,024	0	-7,763	3.1	4.1	0
8/8/2018 04:20	15,121	16,668	7,591	740	1,024	0	-7,894	3.1	4.1	0
8/8/2018 04:25	15,126	16,639	7,632	640	1,024	0	-8,035	3.1	4.1	0
8/8/2018 04:30	15,092	16,612	7,617	560	1,024	0	-8,100	3.1	4.1	0
8/8/2018 04:35	15,119	16,621	7,628	540	1,024	0	-8,131	3.1	4.1	0
8/8/2018 04:40	15,136	16,684	7,635	560	1,024	0	-8,118	3.1	4.1	0
8/8/2018 04:45	15,107	16,693	7,635	580	1,024	0	-8,098	3.1	4.1	0
8/8/2018 04:50	15,146	16,720	7,635	640	1,024	0	-8,038	3.1	4.1	0
8/8/2018 04:55	15,160	16,728	7,622	680	1,024	0	-7,985	3.1	4.1	0
8/8/2018 05:00	15,170	16,807	7,624	600	4,197	0	-4,894	4.5	5.9	0
8/8/2018 05:05	15,169	16,847	7,609	600	4,197	0	-4,879	4.5	5.9	0
8/8/2018 05:10	15,207	16,948	7,643	680	4,197	0	-4,833	4.5	5.9	0
8/8/2018 05:15	15,272	16,982	7,718	740	4,197	0	-4,848	4.5	5.9	0
8/8/2018 05:20	15,320	17,013	7,780	740	4,197	0	-4,910	4.5	5.9	0
8/8/2018 05:25	15,388	17,116	7,858	760	4,197	0	-4,968	4.5	5.9	0

Table 1, cont.: Deficit Example of Simple Model of Intermittent Wind and Solar Generation vs. Fossil Generation Replacement and Indian Point Shutdown

	Generation Load	Total Load	Fossil Load	Onshore Wind Load	Offshore	CLCPA solar Load	CLCPA Renewables - Fossil and Indian Point	Buoy Wind Speed	Hub Wind Speed	Solar Irradiance
Date Time (EDT)	(MW)	(MW)	(MW)	(MW)	CLCPA wind	(MW)	(MW Margin)	(m/s)	(m/s)	W/m2
8/8/2018 05:30	15,458	17,166	7,931	720	4,197	0	-5,081	4.5	5.9	0
8/8/2018 05:35	15,577	17,231	8,012	720	4,197	0	-5,162	4.5	5.9	0
8/8/2018 05:40	15,664	17,282	8,077	660	4,197	0	-5,287	4.5	5.9	0
8/8/2018 05:45	15,793	17,334	8,168	680	4,197	0	-5,358	4.5	5.9	0
8/8/2018 05:50	15,900	17,416	8,270	740	4,197	0	-5,400	4.5	5.9	0
8/8/2018 05:55	15,964	17,447	8,337	760	4,197	0	-5,447	4.5	5.9	0
8/8/2018 06:00	15,922	17,512	8,307	800	2,157	0	-7,417	3.6	4.8	0
8/8/2018 06:05	15,821	17,554	8,257	760	2,157	0	-7,407	3.6	4.8	0
8/8/2018 06:10	15,769	17,704	8,253	720	2,157	0	-7,443	3.6	4.8	0
8/8/2018 06:15	15,923	17,824	8,357	840	2,157	0	-7,427	3.6	4.8	0
8/8/2018 06:20	16,086	17,912	8,420	1320	2,157	0	-7,010	3.6	4.8	0
8/8/2018 06:25	16,130	18,028	8,459	1300	2,157	750	-6,319	3.6	4.8	50
8/8/2018 06:30	16,124	18,099	8,452	1200	2,157	750	-6,412	3.6	4.8	50
8/8/2018 06:35	16,291	18,150	8,550	1140	2,157	750	-6,570	3.6	4.8	50
8/8/2018 06:40	16,451	18,287	8,657	1120	2,157	750	-6,697	3.6	4.8	50
8/8/2018 06:45	16,541	18,391	8,759	1160	2,157	750	-6,759	3.6	4.8	50
8/8/2018 06:50	16,786	18,474	8,878	1200	2,157	750	-6,838	3.6	4.8	50
8/8/2018 06:55	17,051	18,659	9,009	1140	2,157	2,250	-5,529	3.6	4.8	150
8/8/2018 07:00	17,109	18,735	9,049	1060	798	2,250	-7,008	3.0	4.0	150
8/8/2018 07:05	17,198	18,920	9,046	940	798	2,250	-7,125	3.0	4.0	150
8/8/2018 07:10	17,417	19,132	9,131	820	798	2,250	-7,330	3.0	4.0	150
8/8/2018 07:15	17,643	19,262	9,262	680	798	2,250	-7,601	3.0	4.0	150
8/8/2018 07:20	17,819	19,414	9,378	520	798	2,250	-7,877	3.0	4.0	150
8/8/2018 07:25	18,039	19,545	9,509	460	798	3,000	-7,318	3.0	4.0	200
8/8/2018 07:30	18,341	19,650	9,605	440	798	3,000	-7,434	3.0	4.0	200
8/8/2018 07:35	18,333	19,781	9,705	540	798	3,000	-7,434	3.0	4.0	200
8/8/2018 07:40	18,306	19,918	9,771	600	798	3,000	-7,440	3.0	4.0	200

Table 1, cont.: Deficit Example of Simple Model of Intermittent Wind and Solar Generation vs. Fossil Generation Replacement and Indian Point Shutdown

	Generation Load	Total Load	Fossil Load	Onshore Wind Load	Offshore	CLCPA solar Load	CLCPA Renewables - Fossil and Indian Point	Buoy Wind Speed	Hub Wind Speed	Solar Irradiance
Date Time (EDT)	(MW)	(MW)	(MW)	(MW)	CLCPA wind	(MW)	(MW Margin)	(m/s)	(m/s)	W/m2
8/8/2018 07:45	18,339	19,965	9,857	560	798	3,000	-7,566	3.0	4.0	200
8/8/2018 07:50	18,606	20,128	10,044	600	798	3,000	-7,713	3.0	4.0	200
8/8/2018 07:55	18,818	20,204	10,214	700	798	3,750	-7,033	3.0	4.0	250
8/8/2018 08:00	18,973	20,399	10,362	680	3,064	3,750	-4,935	4.0	5.3	250
8/8/2018 08:05	19,364	20,443	10,710	660	3,064	3,750	-5,303	4.0	5.3	250
8/8/2018 08:10	19,743	20,669	10,936	640	3,064	3,750	-5,549	4.0	5.3	250
8/8/2018 08:15	19,980	20,759	11,092	580	3,064	3,750	-5,765	4.0	5.3	250
8/8/2018 08:20	20,135	20,923	11,245	540	3,064	3,750	-5,958	4.0	5.3	250
8/8/2018 08:25	20,220	20,976	11,351	560	3,064	4,500	-5,294	4.0	5.3	300
8/8/2018 08:30	20,318	21,022	11,446	520	3,064	4,500	-5,429	4.0	5.3	300
8/8/2018 08:35	20,321	21,143	11,507	460	3,064	4,500	-5,550	4.0	5.3	300
8/8/2018 08:40	20,297	21,286	11,542	480	3,064	4,500	-5,565	4.0	5.3	300
8/8/2018 08:45	20,367	21,332	11,595	540	3,064	4,500	-5,558	4.0	5.3	300
8/8/2018 08:50	20,388	21,399	11,665	540	3,064	4,500	-5,628	4.0	5.3	300
8/8/2018 08:55	20,351	21,490	11,674	540	3,064	6,750	-3,387	4.0	5.3	450
8/8/2018 09:00	20,472	21,578	11,768	540	2,611	6,750	-3,934	3.8	5.0	450
8/8/2018 09:05	20,585	21,618	11,915	480	2,611	6,750	-4,141	3.8	5.0	450
8/8/2018 09:10	20,557	21,772	11,956	500	2,611	6,750	-4,162	3.8	5.0	450
8/8/2018 09:15	20,602	21,856	11,974	700	2,611	6,750	-3,980	3.8	5.0	450
8/8/2018 09:20	20,682	21,975	12,026	660	2,611	6,750	-4,072	3.8	5.0	450
8/8/2018 09:25	20,750	22,037	12,073	760	2,611	7,500	-3,269	3.8	5.0	500
8/8/2018 09:30	20,884	22,133	12,151	840	2,611	7,500	-3,267	3.8	5.0	500
8/8/2018 09:35	20,908	22,214	12,206	960	2,611	7,500	-3,202	3.8	5.0	500
8/8/2018 09:40	20,965	22,276	12,234	1100	2,611	7,500	-3,090	3.8	5.0	500
8/8/2018 09:45	21,018	22,364	12,265	1480	2,611	7,500	-2,741	3.8	5.0	500
8/8/2018 09:50	21,084	22,478	12,301	2080	2,611	7,500	-2,177	3.8	5.0	500
8/8/2018 09:55	21,101	22,563	12,340	2560	2,611	8,250	-986	3.8	5.0	550

Energy Storage Requirements and Costs

I am unfamiliar with an analysis that attempted to determine how much storage capacity would be required to meet a real-world generation capacity deficit in New York State so I did not have an example methodology to use. Clearly the total capacity has to exceed the observed deficit. In this case I estimate that the total deficit equals the sum of the average of the twelve 5-minute deficits each hour or 33,548 MWh. I think that the maximum output of the necessary energy storage has to equal the largest 5-minute deficit or 8,131 MW.

After that it is not clear how best to divvy up the energy storage requirements. I assumed that the least cost energy storage approach would maximize energy storage duration based on lower costs per MWh in a recently released report from the National Renewable Energy Lab (NREL): "2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Cost Benchmark". The report estimates costs for engineering, procurement and construction (EPC) and development including permitting, land acquisition and interconnection.

Unfortunately, the NREL document does not list costs for durations greater than four hours. Table 3 in the NREL document, Detailed Cost Breakdown for a 60-MW U.S. Li-ion Standalone Storage System with Durations of 0.5–4 Hours, provides the information necessary to extend their projections to different durations (Table 2). For example, NREL estimated the installation labor and expense cost ranging from 0.5 hours to 4 hours. I fit a linear regression model to describe the relationship between that and other costs and energy storage duration so I could extend the cost estimates. I use <u>Statgraphics Centurion</u> software from StatPoint Technologies, Inc. to do my statistical analyses because it provides flexible plotting and regression tools. Statgraphics enables the user to choose the best relationship from 27 different linear regression equations. In this evaluation in every instance, the reciprocal-X model (Y = a + b/X) statistic was the best choice and every regression had an R-squared coefficient great than 99.9% which indicates a strong relationship and suggests that these estimates are adequate for this analysis. Table 3 lists the estimated cost breakdown \$/kWh parameters for the six capacity and duration U.S. Liion standalone storage systems I estimate are required to prevent a deficit in this example. The table provides the parameters so that the \$/kWh value so any duration system can be calculated.

Table 2: NREL Detailed Cost Breakdown from "2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Cost Benchmark".

Table 3. Detailed Cost Breakdown for a 60-MW U.S. Li-ion Standalone Storage System with Durations of 0.5-4 Hours

	60-MW, 4-hour Du	ration, 240-	60-MW, 2-hour l	Duration, 12	20-MWh	60-MW, 1-hour I	Duration, 60	-MWh	60-MW, 0.5-hour Duration, 30-MWh			
Model Component	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W
Li-ion battery	50,160,000	209	0.84	25,080,000	209	0.42	12,540,000	209	0.21	6,270,000	209	0.10
Battery central inverter	4,200,000	18	0.07	4,200,000	35	0.07	4,200,000	70	0.07	4,200,000	140	0.07
Structural BOS	3,121,131	13	0.05	1,813,452	15	0.03	1,159,612	19	0.02	832,692	28	0.01
Electrical BOS	8,602,825	36	0.14	6,119,167	51	0.10	4,877,337	81	0.08	4,256,423	142	0.07
Installation labor & equipment	5,479,149	23	0.09	4,322,275	36	0.07	3,743,838	62	0.06	3,454,619	115	0.06
EPC overhead	2,775,545	12	0.05	1,948,565	16	0.03	1,535,075	26	0.03	1,328,330	44	0.02
Sales tax	5,293,460	22	0.09	3,083,292	26	0.05	1,978,209	33	0.03	1,425,667	48	0.02
∑ EPC cost	79,632,110	332	1.33	46,566,751	388	0.78	30,034,071	501	0.50	21,767,732	726	0.36
Land acquisition	250,000	1	0.00	250,000	2	0.00	250,000	4	0.00	250,000	8	0.00
Permitting fee	295,289	1	0.00	295,289	2	0.00	295,289	5	0.00	295,289	10	0.00
Interconnection fee	1,802,363	8	0.03	1,802,363	15	0.03	1,802,363	30	0.03	1,802,363	60	0.03
Contingency	2,477,135	10	0.04	1,476,303	12	0.02	975,887	16	0.02	725,679	24	0.01
Developer overhead	2,477,135	10	0.04	1,476,303	12	0.02	975,887	16	0.02	725,679	24	0.01
EPC/developer net profit	4,346,702	18	0.07	2,593,350	22	0.04	1,716,675	29	0.03	1,278,337	43	0.02
∑ Developer cost	11,648,623	49	0.19	7,893,608	66	0.13	6,016,101	100	0.10	5,077,347	169	0.08
∑ Total energy storage system cost	91,280,733	380	1.52	54,460,359	454	0.91	36,050,172	601	0.60	26,845,079	895	0.45

Table3: Calculated Cost Breakdown \$/kWh Parameters for a U.S. Li-ion Standalone Storage System for Different Durations

			Duration	7	6	5	1	2	1
			Capacity	60	1,300	2,750	2,690	1,250	1,870
	\$/k								
Model Component	Intercept	Slope	R squared	\$/kWh	\$/kWh	\$/kWh	\$/kWh	\$/kWh	\$/kWh
Li-ion battery	Fixed \$/kWh		1	209	209	209	209	209	209
Battery central inverter	0.30348	69.8087	100%	10.3	11.9	14.3	70.1	35.2	70.1
Structural BOS	10.6957	8.5913	99.95%	11.9	12.1	12.4	19.3	15.0	19.3
Electrical BOS	20.6957	60.5913	100%	29.4	30.8	32.8	81.3	51.0	81.3
Installation labor & equipment	9.69565	52.5913	100%	17.2	18.5	20.2	62.3	36.0	62.3
EPC overhead	7.21739	18.4348	99.94%	9.9	10.3	10.9	25.7	16.4	25.7
Sales tax	18.3913	14.7826	99.80%	20.5	20.9	21.3	33.2	25.8	33.2
Σ EPC cost		1	1	308	313	321	501	388	501
Land acquisition	Fixed total cos	t		0.60	0.00	0.02	0.00	0.10	0.00
Permitting fee	Fixed total cos	t		0.70	0.00	0.02	0.00	0.12	0.00
Interconnection fee	Fixed total cos	t		4	0	0	0	1	0
Contingency	8	8	100.00%	9.1	9.3	9.6	16.0	12.0	16.0
Developer overhead	8	8	100.00%	9.1	9.3	9.6	16.0	12.0	16.0
EPC/developer net profit	14.6957	14.1913	99.97%	16.7	17.1	17.5	28.9	21.8	28.9
Σ Developer cost		•	•	41	36	37	61	47	61
∑ Total energy storage system cost				349	349	358	562	435	562

Table 4 estimates the energy storage needs and my projection for the amount of different duration energy storage needed to cover the projected seven hour deficit on August 8, 2018. In the first hour of the deficit period the hourly average was 1,140 MW but the peak was 1,390 MW so I project 1,400 MW at 7-hour duration could be used. The next hour had the peak 5-minute deficit of 8,131 MW. In order to meet that and subsequent hours I project 1,300 MW at 6-hour duration, 2,750 MW at 5-hour duration and 2,690 MW at 1-hour duration would cover that peak and most of the subsequent deficits. In order to cover subsequent peaks I added 1,250 MW at 2-hour duration and 620 MW at 1-hour duration. The total MWh stored (37,160) exceeds the observed total deficit (33,548) by 3,612 so there is a lot of room for refining this analysis but that has to be weighed against the fact that no attempt was made to find the worst case period.

If we combine the estimated energy storage resources required with the NREL energy storage benchmark costs we can estimate potential costs. In this example I only calculated the EPC costs. Clearly it will not be possible to build a single facility to cover the calculated requirements. In order to cover the deficit of energy produced by solar and wind resources at an aggressive level over current onshore wind and proposed CLCPA solar and wind, \$12.5 billion dollars for just the batteries will be required to replace existing fossil generation and Indian Point.

Table 4: Estimated Energy Storage Required and Potential Price Necessary to Prevent Deficit on August 8 2018

			Energy Storage Systems								
	Average	Minimum	Total (MWhr)	9,800	7,800	13,750	2,690	2,500	620	Total	Storage
	Deficit	Deficit	Capacity (MW)	1,400	1,300	2,750	2,690	1,250	620	Storage	Margin
Date Time (EDT)	MWhr	MW5-min	Duration (Hr)	7	6	5	1	2	1	Used	(MW)
8/8/2018 03:00	-1,140	-1,390		1,400						1,400	10
8/8/2018 04:00	-7,951	-8,131		1,400	1,300	2,750	2,690			8,140	9
8/8/2018 05:00	-5,089	-5,447		1,400	1,300	2,750				5,450	3
8/8/2018 06:00	-6,819	-7,443		1,400	1,300	2,750		1,250		6,700	-743
8/8/2018 07:00	-7,407	-7,877		1,400	1,300	2,750		1,250	620	7,320	-557
8/8/2018 08:00	-5,327	-5,958		1,400	1,300	2,750				5,450	-508
8/8/2018 09:00	-3,252	-4,162		1,400	1,300					2,700	-1,462
Total	-36,985										

NREL Energy Storage Benchmark Prices (\$millions)

		<u>, , , , , , , , , , , , , , , , , , , </u>				
\$/KWhr	\$ 308	\$ 313	\$ 321	\$ 501	\$ 388	\$ 501
Battery Total	\$ 3,020	\$ 2,445	\$ 4,413	\$ 1,347	\$ 971	\$ 310
Grand total	\$ 12,506					