Transportation Climate Initiative Polling Results

I have previously posted on the Transportation Climate Initiative and its disconnect with reality.  To this point its promoters and stakeholders have labored in obscurity all the while believing that they have a mandate from the public to change the transportation system significantly.  Now there is a poll out claiming that the majority of the public supports the plan.

Survey

A new survey from MassINC Polling Group purportedly shows broad support for the Transportation Climate Initiative.  According to the press release:

A new set of polls of registered voters across the Northeast and Mid-Atlantic finds broad support for a multi-state policy to cap carbon pollution from transportation and invest in transportation improvements. That policy is currently being developed by the Transportation and Climate Initiative (TCI), a collaboration between 12 states and the District of Columbia.

The research surveyed registered voters in the seven largest states at the TCI table: Connecticut, Maryland, Massachusetts, New Jersey, New York, Pennsylvania, and Virginia. Overall, 66% of voters said they would support the policy, while 23% were opposed. Support ranged from a high of 71% in New York to a low of 60% in Virginia.

“This is a complex policy, and so we took the time to explain the basics of how it would work and how states might use the funds generated by it,” said Steve Koczela, president of The MassINC Polling Group, which conducted the polls with support from the Barr Foundation. “Support was broad, stretching across demographic and party lines and throughout the region.”

Across nearly every demographic group, more voters support than oppose their state joining in the program. Support was highest about younger voters (78%), non-white voters (75%), and lower income voters. Women (69%) were slightly more supportive than men (63%). The partisan gap was smaller than is seen on many issues in the current polarized climate, with Democratic support outpacing Republican support.”

 Voters were also asked to rate several potential uses for the funds generated by the proposed program. While majorities supported each item, two rose to the top overall and across the seven states polled: improving public transit and protecting transportation infrastructure from the effects of climate change. Generally, investing the proceeds of the program in existing infrastructure was favored over seeding newer technologies like electric vehicles, targeting communities most effected by pollution, or insulating drivers from higher costs at the pump.

The polls also asked voters about their views of climate change:

                • 73% of voters across the region think climate change is probably happening;
                • Among those, 85% think it is due at least in part to human activity;
                • 66% think climate change will be a serious problem for their state if left unchecked;
                • 57% think the federal government is doing too little to address climate change; and
                • 44% think the same of their own state government.

Voters also understand that transportation is contributing to climate change. When asked to rank six sectors of their state’s economy based on their greenhouse gas emissions, 65% ranked transportation first or second.

Despite all this, only 48% cited addressing climate change as a “major priority” for state government in their state. More (64%) considered improving roads, highways and bridges a major priority, just below health care costs (73%) and jobs and the economy (71%).

The disconnect between voters’ professed concern about climate change and the priority they place on addressing it is consistent with other polling MPG has conducted on climate change. “We’ve seen in other polling on this issue that voters believe in climate change and support policies that would address it, though not always because of the link,” said Koczela. “They may not always rank climate as a top immediate concern, but they do support actions to address it.”

About the Poll

These results are based on a survey of 6,395 registered voters across seven Northeast and Mid-Atlantic states: Connecticut, Maryland, Massachusetts, New Jersey, New York, Pennsylvania, and Virginia. Responses were collected via online survey interviewing November 12-19, 2019. Final survey data was weighted to known and estimated population parameters for each state’s registered voters by age, gender, race, education, geography, and party. Each state was then weighted to its relative proportion of registered voters to create an “Overall” regional average. This project was sponsored by The Barr Foundation.

My Thoughts

Steve Koczela, president of The MassINC Polling Group said “This is a complex policy, and so we took the time to explain the basics of how it would work and how states might use the funds generated by it”.  It is mind boggling to me that he never thought to include a question about costs.  Obviously if costs are low why wouldn’t everyone be in favor of “improving public transit and protecting transportation infrastructure from the effects of climate change”.

The published plan says that in December 2019 there will be a release of a regional policy proposal in the form of a draft Memorandum of Understanding (MOU), accompanied by modeling results that estimate the energy and emissions implications of different cap levels and investment scenarios, as well as potential costs and benefits of different program design options.  When it is released then there can be a poll that determines how much appetite the public has when they know potential costs.  Until then any poll is suspect.

I have one other problem with the poll itself.  I was unable to find details about the geographic distribution but because the only geographical categories listed were by state, I doubt that there was consideration of urban vs. rural.  The fact is that rural respondents are not going to rate improvements to public transit very high because it is of no value to them.  On the other hand, the gasoline tax increase needed to fund the TCI will disproportionally disadvantage anyone who has no choice but to use their personal vehicle.  For example, the National Household Travel Survey estimated vehicle miles traveled in 2009.  In the TCI jurisdictions urban vehicles mile traveled totaled 386.55 million miles, suburban miles traveled were 666.36 million miles, and rural miles traveled 703.38 million miles.  Failure to account for that geographic difference makes the poll suspect.

Finally, I think there is a corollary to the concept that you can prove anything with statistics.  In particular, you can prove anything with a survey poll.  The Barr Foundation sponsored this poll.  Their website states:

“Climate change is real. It is happening. It is accelerating. All over the world, people are experiencing its effects. And these are becoming more devastating every year—a trend that can be checked only through dramatic, global effort.”

I believe they got what they paid for.

New York City Energy Storage Peaking Turbine Replacement

The biggest air quality issue in New York State is compliance with the National Ambient Air Quality Standard for Ozone. In order to meet that limit the New York State of Department of Environmental Conservation (DEC) proposed regulations earlier this year to lower allowable nitrogen oxide (NOx) emissions from simple cycle and regenerative combustion turbines during the ozone season. The problem is that these turbines are needed to keep the lights on during periods when needed most so replacement is not very simple as I explained in an earlier post.

This post describes the State’s evaluation of the politically correct alternative, energy storage, to provide the power generated by these turbines. This post addresses the report findings for turbines that could be directly replaced by energy storage. I want to emphasize that the following represents my opinion and not the opinion of any of my previous employers or any other company with which I have been associated. I have been following the operational implications of these turbines and their effect on ozone for over 20 years.

Background

The evaluation of using energy storage to replace these peaking units is part of the New York State Energy Storage Roadmap announced by Governor Cuomo in June 2018. As part of that effort the Department of Public Service (DPS) established an Energy Storage Deployment Program. On July 1, 2019, Energy Storage Deployment Program Report – Unit by Unit Peaker Study was submitted to the docket for Case 18‐E‐0130 – In the Matter of Energy Storage Deployment Program. DPS staff, working with New York State Energy Research and Development Authority (NYSERDA), Long Island Power Authority (LIPA), New York Independent System Operator (NYISO), NY Department of Environmental Conservation (DEC), Con Edison, and consulting firm Energy and Environmental Economics, Inc. (E3) prepared the report. The DPS December 12, 2018 Order Establishing Energy Storage Goal and Deployment Policy directed them to develop a unit‐by‐unit operational and emission profile study and methodology to determine which downstate peaking power plant generating units are potential candidates for repowering or replacement. My previous post describes these peaking turbines and more detail on the rationale for replacement so I will not repeat that material here.

The December 2018 DPS Energy Storage Goal and Deployment Policy specified what was to be included in the analysis. It was to “include a series of reliability and operational assessment studies looking at the equivalent level of ‘clean resources’ that could provide the same level of reliability as the existing peaker units. Hybridization and repowering with energy storage, as well as replacement with stand-alone energy storage, should be explicitly examined, according to the Roadmap.”

According to the description in Energy Storage Deployment Program Report – Unit by Unit Peaker Study:

The analysis relies on historical 2013 hourly operational and emissions data for the approximately 4,500 MW of affected peaking units across the state (almost entirely concentrated in New York City, Long Island, and the Lower Hudson Valley) to examine the technical feasibility of energy storage or energy storage paired with solar providing equivalent historical generation of the peaking units. Peaker operational and emissions data from 2013 was chosen because this reflects the peak NYISO demand year, and the correspondingly high levels of peaker operation which occurred in July 2013. This served as a proxy for representing peak‐level system operations, although theoretical peak system operations may impose incremental needs beyond those of 2013. The study did not consider system changes after 2013 that may impact how conventional peaking units and energy storage resources operate in the future, such as retirements of existing units, changes in the overall levels and patterns of demand, new transmission solutions, and/or the addition of more intermittent, renewable energy.

Analysis

I am not a fan of the approach used in this analysis because I think it gives some mis-leading unit specific information. In the first place they considered all turbines as candidates not understanding that the primary purpose of some turbines is not to provide power during high load demand periods. They wasted effort considering the Jamestown Public Utilities turbine in Western New York that runs on the order of half the time. Peaking turbines are defined as units with an “average annual capacity factor of 10.0 percent or less over the past three years”. In addition there are turbines at steam boiler facilities that are necessary for “black start” situations when there is a blackout and the power necessary to start up the boiler is unavailable from the grid. Because that is a very rare instance the units are also run to provide power for peak power periods. In my opinion it would not be cost effective to dedicate energy storage for this application. You could not use it for peak loads because you never know when the grid power won’t be available. In conclusion the report considered units that should not have been included.

According to Table A-1 in the report, there are 3,780 MW of peaking turbines in New York. The report concludes that “Overall, at least 275 MW of peaking units, or around six percent of the total rated capacity of the fleet, are found to be potential candidates for replacement with 6‐hour energy storage sized to the maximum 2013 output of each peaking unit.” That means that a 6-hr energy storage system would be able to replace 7% of the existing peaking turbine capacity. The report goes on to say that “This number increases to over 500 MW when using 8‐hour duration storage”, but that only increases the replacement of existing capacity to 13%.

I don’t disagree with their conclusion that “Energy storage or a combination of energy storage and solar can contribute towards meeting NOx limits for a large number of units”. However there is a long way between “can contribute” and “will actually be an option used”. This is a preliminary scoping study. It notes that the “minimum size storage required to meet the NOx requirements can vary between units of the same facility” but does not recognize that the variation between sister units at a facility does not mean that one unit is more of a candidate than another.  The reality is that affected sources will adopt a facility‐wide strategy to meet the NOx limits and those strategies were not examined in this report.

There are other issues as noted in the Conclusion and Recommendations for Further Study. They note that “A more detailed analysis will be needed to understand the reliability impacts of specific unit replacements, especially as loads and resources change with greater electrification of transport and buildings and higher penetrations of renewables.” Many of these peaking units are in load pockets and changes in the load will drive whether energy storage is viable.

Costs

The report states that “A more detailed and thorough benefit‐cost analysis would need to be performed to understand the true economic viability of the replacement and/or hybridization options presented in this analysis.” Therein lies the biggest issue of energy storage – the cost. For those of us outside of Albany who care about costs a recently released report from the National Renewable Energy Lab (NREL): “2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Cost Benchmark” provides information that can be used to estimate the costs of the energy storage option.

The NREL study lists costs for durations up to four-hours but the DPS report also includes six-hour and eight-hour durations. Table 3 in the NREL document, Detailed Cost Breakdown for a 60-MW U.S. Li-ion Standalone Storage System with Durations of 0.5–4 Hours, provides the information necessary to extend their projections to those different durations. I fit a linear regression model to describe the relationship between the specific costs and energy storage duration from the NREL table. I use Statgraphics Centurion software from StatPoint Technologies, Inc. to do my statistical analyses because it enables the user to choose the best relationship from 27 different linear regression equations. In this evaluation, in every instance, the reciprocal-X model (Y = a + b/X) statistic was the best choice and every regression had an R-squared coefficient great than 99.9% which indicates a strong relationship and suggests that these estimates are good enough for this analysis.

The NREL analysis includes all the costs for a greenfield energy storage project so I calculated values of retrofit potential costs that exclude the land acquisition costs. I estimate the installed cost for energy to be $343/kWh for an eight-hour battery system, $355/kWh for a six-hour battery system, and $380/kWh for a four-hour battery system.

The table NYC Energy Storage Peaker Replacement Summary lists data from the DPS study and calculated values. Table E1 in the DPS report lists the total nameplate capacity (MW) of peaking units that can potentially be fully replaced with storage to meet the 2025 NOx limits at 100% sizing to each unit’s 2013 peak generation. Note that I did not include the upstate turbine included in the DPS report in this analysis because it is not a peaking turbine. There are 36 MW of peaking unit capacity in New York City and Long Island that can be replaced with four hours of storage, 229 MW that can be replaced with six hours of storage, and 463 MW with eight hours of storage for a total of 728 MW. This is 18% of the 2013 peak load in New York City and on Long Island. Table A estimates the replacement cost estimate using the NREL report numbers and shows that replacing 18% of the load with Li-ion battery storage would cost $1.8 billion.

The cost per ton removed further demonstrates the staggering cost implications. I could not figure out which particular units were candidates for replacement because my analysis of Table B-1 did not result in the same number of units in each category. As a result I could not calculate the unit-specific cost per ton removed. Instead I just used the total emissions from all the sources the report’s Table 3: Peaking Units 2013 Operational Data. Table B shows the costs if all the emissions from all the peaking units came only from the 728 MW that can be replaced by energy storage. The cost to remove a ton of NOx is over $900,000 per ton and cost to remove a ton of CO2 is over $1,000 per ton. In order to put those numbers in perspective consider that the social cost of carbon (the alleged societal cost per ton of CO2 emitted) is currently around $50 by the Obama administration method and less than $5 by the Trump administration.

Conclusion

The report concludes “Overall, the findings suggest that there is an opportunity to consider replacing or hybridizing a substantial portion of the peaking units subject to DEC’s proposed NOx rule with a fleet of storage resources paired with solar. Such an outcome would potentially deliver significant environmental benefits, advance the state’s carbon reduction and clean energy goals, as well as benefit historically disadvantaged populations and communities such as environmental justice areas in line with the goals of the Climate Leadership and Community Protection Act.” However these results show that the cost of energy storage replacement is at least an order of magnitude greater than the cost of carbon’s impacts so this opportunity is not a cost-effective way to advance the state’s carbon reduction and clean energy goals.

New York Peaking Turbines

 

On February 28, 2019 the New York State of Department of Environmental Conservation (DEC) proposed regulations to lower allowable nitrogen oxide (NOx) emissions from simple cycle and regenerative combustion turbines during the ozone season. On the face of it this should be a relatively simple air quality issue but it is complicated by Governor Cuomo’s clean energy agenda. I am motivated to write this post on air quality regulation and energy policy because the majority of what has been said so far about this regulation fails to discuss the complexities of the issue and misses the point of the regulations.

This post describes an open regulatory issue and I want to emphasize that the following represents my opinion and not the opinion of any of my previous employers or any other company with which I have been associated. Ozone pollution is currently New York State’s most difficult air quality issue and I have been following the particular aspect of these turbines and their effect on ozone for over 20 years. I will try to show in this post the background of the problem and how this regulation is embroiled in energy policy implications that are complicating the issue considerably.

Background

The proposed regulation covers simple cycle and regenerative combustion turbines but I am going to focus on just simple cycle turbines in New York City which make up the majority of the turbines in question. In the early 70’s Consolidated Edison was an integrated utility and responsible for generating and distributing electricity to New York City. Their generation planners developed a fleet of baseload, intermediate and peaking generating plants to provide power for the expected demand. (If you are unfamiliar with this concept I recommend the Generation Planning 101 section at this link).

Keep in mind that New York City requires massive amounts of power and there are geographical limitations as to how much can be imported in so the whole metropolitan area is a load pocket.   Moreover there were areas in the City that had their own load issues, i.e. they are in load pockets within the City-wide load pocket. In order to provide peaking power for the City and those areas Con Ed developed four combustion turbine facilities that use simple cycle turbines: Astoria (558 MW current nameplate capacity), Gowanus (640 MW), Narrows (352 MW) and Ravenswood (375.3 MW). According to the NYISO “Gold Book” in 2017 the net energy generated from all four facilities was 212.2 GWh with an overall capacity factor of 1.3% as shown in New York City Simple Cycle Peaking Turbines Summary.

New York City Simple Cycle Peaking Turbines Summary
  Number of Name Plate 2017 Net Energy Capacity
Facilities Turbines (MW) GWh Factor
Astoria 12 558.0 103.2 2.1%
Gowanus 32 640.0 31.9 0.6%
Narrows 16 352.0 56.6 1.8%
Ravenswood 10 375.3 20.5 0.6%
Total 70 1,925.3 212.2 1.3%

The units at these facilities are known as peaking turbines for a reason. They only run when power is really needed. For New York City this is primarily during the summer when load peaks due to air conditioning load. When Consolidated Edison was responsible for electric system reliability they had a fuel and generating mix that addressed peak load using these relatively cheap to install and operate turbines. Simple cycle turbines are basically jet engines hooked up to an electrical generator. In order for these sources to be profitable they have to recover all their operating and maintenance costs for the year during those peak periods. Part of the reason costs go up so much when energy demand is high is because of this effect.

 

While appropriate at the time they are ready for replacement. The turbines at these four facilities are approaching 50 years old, they are inefficient inasmuch as they burn more fuel than a new turbine to produce the same amount as power, and they are dirty, that is to say their emission rates are much higher than a modern turbine.

 

However, New York State de-regulated the electric sector at the turn of the century. As part of that process, Consolidated Edison sold most of their generating facilities and, in order to encourage competition, the in-city fossil generation assets were sold to three different companies. In the simpler time before de-regulation, DEC would have promulgated a phase-out rule and Consolidated Edison would have proposed replacement power generating facilities and received cost recovery from the NYS Department of Public Service in a rate case because of the obvious need.   Today’s owners have no such assurances. Instead they have to rely on the market to recover their investment costs. As a result energy policy is a major concern.

 

Ozone Air Quality Issue

As noted previously, ozone is New York State’s most difficult are quality problem. Despite years of progress ozone stubbornly fluctuates around the current National Ambient Air Quality Standard (NAAQS) limit that protects human health. It is important to keep in mind that the limit has changed over time so there has been progress but reaching the current limit has proven difficult. Ground-level ozone is not directly emitted into the atmosphere. Instead it is created in a complex photo-chemical reaction (it needs sunlight) from oxides of nitrogen (NOX) and volatile organic compounds (VOC). It is difficult to control in New York City because there are two pollutants, the reaction that creates ozone takes time so wind transport is an issue and transport in the complicated wind regimes along the Atlantic and Long Island Sound coastlines is difficult to simulate.

 

Ozone reaches unhealthy levels on hot sunny days and therein lies the rub. On hot sunny days people want air conditioning and as a result those are the days of peak load. That means that the peaking turbines usually run on those days most conducive to ozone formation. On those days reductions at all sources of NOX and VOC have been considered to control ozone. Because NOX is emitted from all combustion sources and VOCs are emitted from most things that have an odor there are all kinds of sources that affect ozone concentrations. Peaking turbines are one of the last large sources and I believe need to be controlled. As a side note however, I don’t think that when they are controlled that ozone compliance will be attained but it is progress and their time has come.

Electric Sector Energy Policy

If this were only an air quality issue the New York State Department of Environmental Conservation (DEC) would have simply promulgated a rule that requires phase out over time a long time ago. Unfortunately, there are energy policy ramifications, because while they are dirty, they also are necessary to provide power during peak periods. DEC wants to keep the lights on so they have not proposed such a rule until this time. During the development of the regulation the primary concern was how to develop a regulation that would give time for replacement power to be developed.

According to de-regulated utility theory the market will respond to needs when the price is right. In this case, that will be when developers believe the market supports permitting and building replacement power plants. I am not an economist or power plant developer but it is my opinion that you asking a lot of the market to provide an incentive to an investor to commit to developing a power plant anywhere, but (as we shall see) in New York that is doubly true. So what is the peaker market situation in New York? As mentioned before three companies currently own the four primary peaker turbine facilities in New York. One has not done anything. As far as I can tell that simply may because their facility has more site constraints than the other two companies. The other two companies have replacement plans.

According to the NYISO Gold Book, NRG Energy first proposed to re-power its Astoria Gas Turbine facility in the 2009 Gold Book and there is a project proposed in the most recent edition. Their plan is to build “fast-response, high efficiency combined cycle” turbines to replace the existing facility. New York has excruciating permitting requirements for power plants which are a major hurdle for development. The fact that NRG has a permitted project is a big plus. Again, I am no economist or power plant developer, but it appears to me that NRG thought they could make money when they were doing the permitting but has not yet decided to commence construction so they are not sure they can make money re-powering its turbines. Only time will tell whether that economic decision will change when this regulation is implemented.

Eastern Power Generation owns the Gowanus and Narrows turbine facilities. They have proposed to re-power Gowanus and retire Narrows at the formal start of their permitting process so they are navigating the process. In addition to emission reductions, their proposal will reduce the peak amount of power that can be generated. Given that their permitting program is proceeding they must believe they can make money once the facility is built.

 

To recap, DEC has proposed a regulation to phase out older peaking turbines because of their high emissions that affect ozone concentrations. The phase out is complicated by the need to insure peaking power is available but two owners have expressed interest in developing replacement power plants to meet that need. So on the face of it all looks good. If only it were this simple.

New York State Announcement

The only official announcement of this rule was from the New York State Energy Research and Development Authority (NYSERDA).

Governor Andrew M. Cuomo today announced that the New York State Department of Environmental Conservation released proposed regulations to improve air quality and protect public health with new, stringent requirements on peak-use power plants. The proposal will substantially reduce emissions from the “peaking” power plants operating on the hottest days with the most air pollution. These dirty, inefficient plants, are also major sources of carbon pollution. Transitioning away from them is a critical component of achieving Governor Cuomo’s nation-leading Green New Deal. These regulations will help to reduce greenhouse gas emissions 40 percent by 2030 and shift to 100% clean electricity by 2040.

“Climate change is a frightening reality, and while the federal administration buries its head in the sand, New York is taking action to protect our environment and the health of our residents,” Governor Cuomo said. “These proposed regulations are a critical step toward getting older, dirty power plants off the grid in the state’s most vulnerable areas, and demonstrates New York’s leadership in developing a clean energy economy and healthier communities for generations to come.”

There are several odd things about this announcement. Firstly, it did not come from the agency responsible for the rule. I am not sure why DEC would not have made it. The press release correctly notes that it will substantially reduce emissions from peaking power plants. However it states that these units are “also major source of carbon pollution”. Then it goes on to state that this is a critical component for the greenhouse gas emissions goals. The comment about “getting older, dirty power plants off the grid in the state’s most vulnerable areas” is an apparent sop to the environmental justice community. The bottom line is that we have gone from an air quality issue complicated by de-regulation to a “critical” component of Governor Cuomo’s Green New Deal and all the political pandering that entails. I address these points relative to the real world below.

Cuomo’s announcement says that these sources are a major source of carbon pollution. The four peaking turbine facilities I am focusing on in this post emitted 79,385 tons of CO2 in 2017. Other RGGI affected sources in New York emitted 26,064,607 tons of CO2 in 2017. I do not agree that 0.32% of the electric sector emissions is significant. The claim that these turbines are a major source of carbon pollution is absurd.

Cuomo also claims that this is a critical component of the needed reductions for his goals. The NYSERDA Greenhouse Gas Inventory 1990-2015 contains an inventory of historical greenhouse gas emission data from 1990-2015 for New York State’s energy and non-energy sectors. It shows that in 2015 the electric sector was responsible for 16.3% of the state’s emissions. The percentage of these peaking turbines to total electric sector emissions is only 0.043%.   One of the Cuomo goals is to reduce total NYS emissions 80% from 1990 levels. In 1990 CO2 emissions in New York State totaled 185,719,081 tons so the goal will be to get down to 37,143,816 tons. In 2015, CO2 emissions were 164,726,801 tons so the State “only” has to reduce another 127,582,985 tons. If the state is to meet the 2050 goal, then reductions of 3,645,228 tons per year are necessary. In other words the peaking turbines “critical” component (79,385 tons) is 2.2% of the reduction needed for one year which is, again, absurd.

My concern is with the energy policy implications. The announcement also quotes Cuomo as saying “These proposed regulations are a critical step toward getting older, dirty power plants off the grid in the state’s most vulnerable areas”. While these plants are indisputably old and dirty the energy policy question is whether they can be replaced by markedly cleaner fossil. Cuomo was badgered into “committing” to no new natural gas plants in May 2018. In February 2018 the Administration forced the New York Power Authority to do additional studies of the proposed Empire State Plaza Microgrid and Combined Heat and Power Plant project in Albany because the power plant was going to be powered by natural gas in response to local pressure to not use natural gas. I am not sure what the Administration position is on natural gas units for his Green New Deal. Additionally note that the New York City Council Climate Mobilization Act proposed regulation requires the city to complete a study over the next two years on the feasibility of closing all 24 oil- and gas-burning power plants in city limits and replacing them with renewables and batteries. Ultimately the question is whether the environmental agenda for absolutely no more natural gas infrastructure will derail the proposals for new power plants.

 The air quality issue is whether these climate related energy agenda policies will affect the schedule for the replacement of these power plants. One last time, I am no economist or power plant development investor but it seems to me that these are not policies that encourage the proposed re-powering projects. On the other hand I have done enough energy research to determine that replacing dispatchable peaking power with renewables and enough energy storage to guarantee power is available for the peak needs given New York City constraints is a technological reach and a money pit. I fear that the politicians are going to delay what I believe what will ultimately be determined as necessary re-powering projects.

 Conclusion

While many stories I have read about the proposed regulation to retire these peaking turbines as a component of Cuomo’s clean energy initiatives that is not the case. The New York City peaking turbines need to be replaced as part of the process of ozone attainment. They are dirty and inefficient but most of all they are approaching 50 years old and may fail when needed most. Proposals have been made to replace existing units with modern, efficient and markedly cleaner units. Unfortunately the energy innumerate claim that they can be replaced with renewables but the reality is that that is a technological stretch. The real story is that Cuomo’s energy initiatives will likely delay replacing these units or putting the City at risk of another black out banking on an untried and technologically challenging renewable and storage plan.

NY Green Deal: Offshore Wind

This is one of a series of posts on Governor Andrew M. Cuomo’s New York State Green New Deal. As part of his 2019 Justice Agenda he included a “nation-leading clean energy and jobs agenda that will put the state on a path to carbon neutrality across all sectors of New York’s economy”.

Not surprisingly there are no details other than the announcement, no mention of potential costs, and no explanation how all this will affect any of the many impacts that he claims are caused by climate change. There is a proposal to provide the plan to make New York carbon neutral and I will blog on those plans as they become available. In the meantime this post discusses the language used to describe the plan to make New York the national hub for offshore wind and deploy 9,000 megawatts by 2035 as part of the New York Green New Deal.

In the following sections I list the text from the announcement and my indented and italiczed comments follow.

New York is leading the nation on offshore wind, which, as an emerging clean energy industry in the U.S., has tremendous potential for both the energy sector and economic development in the state. Called for by Governor Cuomo and released in 2018, New York’s Offshore Wind Master Plan is the most comprehensive offshore wind strategy in the country and has charted the course for this energy resource to play a significant role in achieving a carbon-free electricity grid. In November 2018, New York issued its first major offshore wind solicitation for at least 800 megawatts, which will set the stage for large-scale development of this important resource and the economic advantages that come with it.

Although the course has been charted, aside from issuing a solicitation there really hasn’t been any implementation progress.

To ensure New York State is the focal point for offshore wind development and this growing industry, Governor Cuomo is proposing nearly quadrupling the State’s target for offshore wind deployment from 2,400 megawatts by 2030 to 9,000 megawatts by 2035, the most aggressive offshore wind goal in U.S. history.

The more relevant number is MWh or megawatt hour which is the measure of energy. New York State energy announcements usually report new facilities in MW or megawatts or power capacity. I believe this is mis-leading because a cursory comparison of this announcement’s 2,400 MW is close to Indian Point’s 2,311 MW capacity. However because wind energy is intermittent, the 2400 MW will only produce 8,977,000 MWh using National Renewable Energy Laboratory’s (NREL) 42.7 capacity factor while Indian Point produced 15,305,000 MWh.

 I used the NREL capacity factor to determine the energy produced.   According to the NREL’s 2017 Cost of Wind Energy Review, the levelized cost of energy off-shore wind is over two and a half times more expensive ($124 per MWh vs $47 per MWh). For the 6,000 MW of offshore wind mandated the estimated cost would be $4.174 billion.

To complement this bold statement of national and global leadership, Governor Cuomo is directing new actions, as part of the Green New Deal, to accelerate offshore wind progress in three specific areas: port infrastructure, workforce development, and transmission infrastructure.

Ports: Invest $200 million in New York port infrastructure to unlock private supply chain capital and maximize the long-term economic benefits to the state from the regional development of offshore wind. This multi-location investment would represent the nation’s largest infrastructure commitment to offshore wind and would solidify New York’s position as the hub of the burgeoning U.S. offshore wind industry.

Workforce Development: Establish a New York State Advisory Council on Offshore Wind Economic and Workforce Development and invest in an offshore wind training center that will provide New Yorkers with the skills and safety training required to construct this clean energy technology right here in New York.

Transmission: Initiate a first of its kind effort to evaluate and facilitate the development of an offshore transmission grid that can benefit New York ratepayers by driving down offshore wind generation and integration costs.

In order to get the off-shore wind power to market, we have to add $200 million for port upgrades, train workers at some cost, and build an off-shore transmission grid. The NREL estimate of over $4 billion does not cover all the costs of off-shore wind!

The development and adoption of offshore wind is a critical component of the transition to a clean energy economy and presents a major economic opportunity for New Yorkers, including the creation of thousands of high-quality jobs. With these new commitments, the New York will continue to lead in this exciting and developing field.

Denmark has offered to help New York’s offshore wind development. However, in 2016 the Danish government decided to abort the plans to build five offshore wind power farms, which were to stand ready by 2020.  At the same time, Denmark is also scraping its green energy tariffs and abandoning some of its climate goals. “Since 2012 when we reached the political agreement, the cost of our renewable policy has increased dramatically,” said Minister for Energy and Climate Lars Christian Lilleholt to Reuters.  The real lesson maybe to beware this source of renewable energy.

New York State Environmental Regulatory Hypocrisy

I have admired those skeptics that would not stop until they had open access to the climatic data that was used for the hockey stick calculations. In my own way I try to emulate their tenacity attempting to get policy makers to use the best rationale for decisions. This is a story of a complete failure of an attempt of mine in that regard.

This post reflects my opinion as a private retired citizen. They do not reflect the position of any of my previous employers or any other company I have been associated with, these opinions are mine alone.

The Cross State Air Pollution Rule (CSAPR) is a regional cap-and-trade program that regulates emissions from large fossil fuel-fired electricity generating units (EGUs) that produce electricity for sale and have a nameplate capacity greater than 25 megawatts electrical. The New York State Department of Environmental Conservation (DEC) recently revised their Parts 243, 244, and 245 rules to ensure New York maintains authority to allocate federal CSAPR allowances to regulated in-state generators and the New York State Energy Research and Development Authority (NYSERDA).

CSAPR is a cap and trade program. In this approach a cap is set that limits the total amount that sources can emit. Allowances representing a ton of emissions are distributed equal to the level of the cap. Sources have flexibility to choose how to meet their limits by either reducing their own emissions or purchasing allowances from other sources. Sources measure and report emissions, and must have sufficient allowances to cover their emissions. If they fail to surrender an allowance for each ton of pollution emitted then there are significant automatic penalties. This approach has been very successful so far but as the caps are ratcheted down there are limits to how well it work in the future.

New York State has submitted comments to the Environmental Protection Agency complaining that the CSAPR emission caps in upwind states are insufficient to enable New York to meet the ozone National Ambient Air Quality Standard limits. They claim that those emissions create so much ozone in the State that it is impossible for in-state sources to reduce enough to meet the ozone limits. They have submitted comments that claim that the upwind sources are not running their existing control equipment enough to lower emissions.

This is a component of cap and trade that some claim is a weakness of the approach. If the cost of an allowance is cheaper than the cost to run control equipment to reduce a ton of pollution, then the source will choose to emit rather than run the control equipment. If you want emissions as low as possible then this frustrates lower emissions. Ultimately this is a problem related to the size of the cap. If the cap is too high then allowances are cheap and their costs will be low and this problem will arise.

Earlier this year the DEC proposed changes to their regulations for the cap and trade programs associated with CSAPR. Their process includes a stakeholder meeting where the proposed rule changes are presented and stakeholders get to ask questions. This is followed by a formal release of the proposed rules and a comment period. Comments are submitted and the final rule is promulgated after consideration of the comments.

My particular problem with the DEC revised rules is that it has an allocation methodology that rewards sources that do not run their control equipment to the full extent possible. In CSAPR, EPA allocates each state a fixed number of allowances. The states get to pick how they allocate those allowances to the affected sources. In earlier programs DEC allocated allowances based on operations and the state-wide emission rate that they determined would meet the cap. In that case, a source had an incentive to run their pollution control equipment more because it would generate extra allowances that could be sold beyond those needed for compliance. The recently promulgated rule awards allowances based on recent emissions. In this case a source that does not run its pollution control equipment gets more allowances!

Despite my comments pointing out this problem and simply recommending that they go back to the previous allowance allocation methodology DEC promulgated the rule with the emissions allowance allocation methodology. It seems hypocritical of DEC to demand that upwind states reduce their emissions when their own rules reward sources that do the same thing.

CPV Valley Energy Center Operating Status August 1, 2018

On August 1, 2018 New York State’s Department of Environmental Conservation (DEC) CPV Valley Permit denied (DEC letter to CPV August 2018) the renewal of the Air State Facility Permit for the Competitive Power Ventures (CPV) Valley Energy Center natural gas power plant located in Orange County, New York. In this post I will describe the decision, what I think is going to happen, potential ramifications, and rationale for the decision. Initially, I thought it might have been an oversight on the part of CPV Valley but the more I poked around the more evidence surfaced that this was a politically motivated decision that will likely end up in court.

Background and Decision

On July 8, 2018, the Middletown Times-Herald Record reported that the “$900 million, 680-megawatt plant built between Interstate 84 and Route 6 will be connected to a natural-gas pipeline in a matter of days, and should begin full-time operation in a matter of weeks.” At the time the last apparent hold up was connecting the plant to the natural gas transmission system after New York Governor Cuomo’s administration tried to block the construction of the connecting pipeline after the plant was nearing completion. However, CPV Valley did not apply for their Title V operating permit and DEC said in their letter that “CPV may not lawfully operate the facility”.

On August 3, 2018, the Middletown Times-Herald Record reported:

The state Department of Environmental Conservation announced its decision in a letter to CPV officials on Wednesday, one day after the air permit DEC granted in 2013 expired. A department official explained that a change in federal regulations required CPV to get a so-called Title V permit from the Environmental Protection Agency before starting up the plant, something the company had not done.

It was not immediately clear if CPV, which had planned to begin operating the $900 million power plant in Wawayanda this month, will contest the decision, or comply with it by applying for a Title V permit. It also was unclear how long it would take to obtain such a permit and what obstacles the company could face. The DEC letter said the permit application requires a public comment period and a 45-day review period for the EPA.

What is going to happen?

I believe that this article is correct that this represents a delay rather than a sign that the facility will not operate someday. The Albany Times Union headline that says State pulls plug on controversial Orange County power plant is incorrect and a Riverkeeper article that suggests that this permit denial indefinitely shuts down the power plant are wrong.

This is a controversial power plant for two reasons. Firstly, there is strong environmentalist opposition to any fossil fuel infrastructure and second there is an associated political scandal. This is election season in New York and the Governor is trying to keep his environmental credentials as clean as possible. This facility’s opponents consistently link this plant to fracked natural gas and point out that it will delay the transition to renewables and call for its permanent closure. Nothing about this administration shocks me anymore so even shutting down a plant needed to replace power from the closure of Indian Point so I would not be that surprised to see them propose that but I can guarantee that there is no way that the permitting process for the missing permit will be completed until well after the election.

The political scandal occurred when a top Cuomo aide was found guilty of getting an executive from CPV to get his wife a high paying “low-show” job for his wife. The payments were in exchange for helping to win state power contracts. Apparently CPV took the lobbying approach to get their power plant commissioned because there is a money trail to politicians associated with the plant. As a result of this there have been calls to prevent the power plant from opening.

Ramifications

I have written about the role of CPV Valley as replacement power for Indian Pont (a nuclear station that Cuomo has forced into accepting a shutdown in April 2021. The New York Independent System Operator concluded that there would be no issues with replacement power if three major generation facilities were completed including CPV Valley. As noted above, because I believe this represents a delay rather than a cancellation I do not expect that to be an issue. However, if Cuomo’s political team decides to go all in for the environmentalist vote and he refuses to give them an operating permit reliability issues will arise.

I have always been on the technical side of things in the power industry. My dealings with the business side of the house were uniformly stressful because their idea of long lead time was tomorrow and environmental permitting takes time so I was always pushed to produce faster. Nonetheless I question whether permanently shutting down a completed power plant makes NY “Open for Business” generally. If I were on the business side of a power generating company I certainly would not be comfortable proposing to build a new power plant to replace the old power plants that the NYS Department of Environmental Conservation (DEC) wants shut down. It will be interesting to see how this turns out not only in the short term but also the long haul.

Rationale

I did not understand how CPV Valley got into a position where they did not even have an application listed on the NYS DEC draft Title V permit website. Title V permits are described as the “operating permit”. How in the world did CPV Valley think that they would not need that?

The Middletown Times Herald-Record article says “A department official explained that a change in federal regulations required CPV to get a so-called Title V permit from the Environmental Protection Agency before starting up the plant, something the company had not done.” Trying to determine what that statement meant was a challenge.

According to the CPV Valley website description of the permitting approval process the first permitting submittal was completed in March 2008. The Town of Wawayanda Planning Board SEQRA Findings Statement was published on May 23, 2012.

In 2013 there was a revision to 6 CRR-NY 201-6.2 Permit Applications to clarify the acceptable time frame for the submittal of Title V permit applications: Renumbered Paragraphs 201- 6.2(a)(1) through 201-6.2(a)(4) were revised to clarify the acceptable time frame for the submittal of Title V permit applications. According to this rule they should have had a complete application prior to construction:

The owner or operator of a facility subject to this Subpart shall submit a complete application, as defined in Part 621 of this Title and this Subpart, for initial issuance of a title V permit, or renewal, in accordance with the timeframes established under paragraphs (1) through (6) of this subdivision:

(1) Prior to the commencement of construction of a new facility subject to permitting under this Subpart

The SEQRA Findings Statement mentions that they submitted an “application for regulatory agency review in conjunction with Federal and State PSD and non-attainment new source review requirements and process” before March 2012.  There is no mention of a Title V permit in the document.

It looks like there was a rule change after the project was permitted and the revision clearly says that a new facility has to have a complete Title V permit before they can begin construction. I can only guess that CPV Valley thought that because they had a State facility permit that it would roll over as if it were an existing facility modification per sub-sections (2) and (3):

(2) Prior to the commencement of operation of new emission unit(s) or modified emission units at an existing facility that make the facility subject to title V permitting. The owner or operator of a facility subject to this provision may choose to apply for a State facility permit pursuant to section 201-5.2 of this Part. Upon issuance, that permit shall authorize both construction and operation of the new or modified emission units until a title V permit is issued in accordance with this Subpart.

(3) Prior to the commencement of construction of a new emission unit at an existing title V facility. The owner or operator of an existing title V facility, which is being modified by the addition of a new emission unit comprised solely of new emission sources, may apply for a State facility permit pursuant to section 201-5.2 of this Part that will authorize construction and operation of the new emission unit upon issuance. A title V permit modification is required within one year of the commencement of operation of the new emission unit.

I did a Google Search for CPV Air State Facility Permits and found the pre-construction permit  (CPV Valley Permit). It turns out the CPV Valley thought that were all right because their permit said “A Title V permit application must be submitted to the Department within one year of commencement of operation of this facility.” The rationale was that the application would include “start-up, shutdown, and fuel switching data to establish enforceable combustion turbine start-up, shutdown, and fuel switching emission rates for NOx, CO, and NH3, and confirm that such established rates would not result in a violation of applicable NAAQS.”

Back to the statement from the Middletown Times Herald-Record that “A department official explained that a change in federal regulations required CPV to get a so-called Title V permit from the Environmental Protection Agency before starting up the plant, something the company had not done.” I am no lawyer but as far as I can tell the change in the DEC regulations in response to the federal regulations came in 2013  before the CPV Air State Facility permit was issued that explicitly said the Title V application had to be submitted within one year of the commencement of operations and if it was after CPV Valley has a permit that shields them from this change. I don’t think that there is any chance that this won’t be headed to court.

New York State Air Pollution Emissions Status

I do not think that the general public understands how much improvement there has been to New York State’s air quality and how big the emissions reductions have been.   This is a summary of the trend of SO2, NOx and CO2 since 1999 in New York State and it shows extraordinary improvements. Later, I will prepare a summary of the changes to the air quality measurements which also show big improvements.

I have to apologize for my inability to incorporate tables and graphs in the body of a WordPress blog post. If I had that ability then this post would be a heck of a lot easier to read. Instead I offer three alternatives. Each of the figures and tables is available by links in the following post. I also have prepared a version of this post and you can view NYS Air Pollution Emission Status Summary  as a pdf document.  Finally that document, three spreadsheets with the data, tables and graphs, and a detailed documentation summary of the data processing analysis are available at the NY Pragmatic Environmentalist dropbox.

The emissions and operating data used for this summary were downloaded from the EPA Clean Air Markets Division Air Markets Program Data website. The website includes a query tool that I have used for years to extract specific data from national emission monitoring programs. For this analysis I downloaded SO2, NOx and CO2 emissions data, operating time, heat input and load data as well as unit-specific information on fuel use and unit type so that I could show what changes caused the emissions reductions. Because this is a New York-centric blog I primarily focused on New York emissions.

Figure 1 NYS SO2 Emissions by Fuel Type documents the annual SO2 emissions from 1998 to 2017 by the primary fuel type reported to EPA. In 1998 SO2 emissions totaled 309,775 tons and in 2017 were only 2,561, a 99% reduction. Table 1 EPA CAMD Data New York State Air Pollution Emissions from All Program Units presents the emissions totals and includes the coal-firing totals. It turns out that reductions in coal-firing and residual-oil firing account for the reduction in SO2 mass. New York is unique in that there are five relatively new large residual oil-fired boiler units in the state. Although there were changes in the limit of sulfur in fuel the primary driver for the reductions was the cost of oil relative to natural gas coupled with the fact that there is essentially no SO2 emitted by natural gas firing. At this time these units survive because they can provide 1000s of MW when necessary and their operational costs are low enough that the payments to be able to provide that capacity are sufficient to be viable. Note, however, that they cannot reduce emissions much more because they still have to run a couple of times a year to prove that they can provide capacity. Coal-firing units in New York were older and were required to install extensive controls over this period to continue to operate. The cost differential between natural gas and coal was the final blow to viability and for all intents and purposes only one facility remains operating today. Governor Cuomo has proposed regulations to eliminate coal burning at even that unit by 2020. These data suggest the de minimus level of future SO2 emissions will be around 1,000 tons per year.

Figure 2 NYS NOx Emissions by Fuel Type documents the annual NOx emissions from 1998 to 2017 by the primary fuel type reported to EPA. In the peak year of 2000 NOx emissions totaled 101,635 tons and in 2017 were only 11,253, an 89% reduction. The coal and residual oil units were also the largest sources for NOx so they account for most of the reduction. On the other hand there still are significant NOx emissions from natural gas firing so the reductions are not as large. Eliminating coal firing will drop emissions another 2,770 tons from 2017 levels. Further reductions will come from replacing older, higher emitting units with new cleaner ones. If I had to guess on a future de minimus level it would be around 7,000 tons per year.

Figure 3 NYS Statewide SO2 and NOx Rates documents the changes in annual emission rates (lbs/mmBtu) over the same period. The reason for these changes is the same as the mass changes. Keep in mind that mass emissions are a function of these rates and the operating levels. If there is more demand on fossil-fired units then they will emit more. Of course, if renewable energy reduces the need for fossil-fired units or if demand for electrical energy goes down due to energy efficiency efforts then mass emissions will go down.

CO2 emissions are a bit complicated. There are two CO2 data sets included: one from the Regional Greenhouse Gas Initiative (RGGI) program units and the other from all programs. In New York there are some small peaking turbines that are not presently included in RGGI. Unfortunately the annual emissions are not directly comparable because units that are not affected by RGGI do not have to report annual emissions only the ozone season (May through September). Also note that the RGGI CO2 Allowance Tracking System (COATS) data system also provides annual numbers for the RGGI only units and those numbers are the same as the RGGI only units from CAMD. Figure 4 NYS CO2 Emissions by Fuel Type lists the annual CO2 emissions from 1998 to 2017 by the primary fuel type reported to EPA. Table 2 EPA CAMD Data NYS Air Pollution Annual Emissions from RGGI Program Units lists the annual emissions from these units. These data show that CO2 emissions reductions to date have been caused by fuel switching but importantly there isn’t much left to switch. As a result, future CO2 emission reductions will be more difficult.

In addition to annual market trading programs there are trading programs that run from May 1 to September 30 for NOx emissions to reduce ozone.   Figure 5 NYS Ozone Season NOx Emissions shows the Ozone Season NOx emissions from 1999 to 2017 by the primary fuel type reported to EPA. In 1999 NOx emissions totaled 47,314 tons and in 2017 were only 5,533 tons, an 88% reduction. Figure 6 NYS Ozone Season NOx Rate documents the changes in ozone season emission rates (lbs/mmBtu) over the same period. The state-wide NOx rate during the Ozone Season in 1999 was 0.202 lbs per mmBtu and was 0.053 in 2017, a 74% reduction. Similar to the annual numbers these reductions are primarily the result of fuel switching. Finally Table 3 New York State Ozone Season NOx Mass by Unit Type lists the Ozone Season NOx mass, heat input and NOx rate values sorted by major unit types: boilers, combined-cycle turbines and simple cycle turbines.

These trends show that New York State has done a superlative job reducing emissions.  There also are implications for future air pollution control programs in these data.  Any future reductions simply cannot be as effective because the current emissions are so low.  In addition, any program that claims air pollution emission benefits for reducing CO2 must recognize the current low rates and mass emissions or those benefit estimates are higher than appropriate.