NYSERDA RGGI Investments – Status Through 2018

I have written previously on the Regional Greenhouse Gas Initiative (RGGI) investment report such as The Investment of RGGI Proceeds in 2016  in this post.  This post covers the analogous New York State Energy Research and Development Authority (NYSERDA) report New York’s RGGI-Funded Programs Status Report – Semiannual Report through December 31, 2018 (“Status Report”).  I believe that the reported benefits for these investments fall far short of what is necessary to meet the RGGI reduction goals and are a warning sign that the Climate Leadership and Climate Protection Act goals are going to be even tougher to meet.

I have been involved in the RGGI program process since its inception.  I blog about these details of the program because very few seem to want to provide any criticisms of the program. The opinions expressed in this post do not reflect the position of any of my previous employers or any other company I have been associated with, these comments are mine alone.

Background

RGGI is a market-based program to reduce greenhouse gas emissions. It is a cooperative effort among the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont to cap and reduce CO2 emissions from the power sector.  The program sets a limit on CO2 emissions and auctions allowances for each ton in the cap.  As the cap is ratcheted down over time emissions necessarily have to go down.  The auction proceeds are used for investments in CO2 emissions reductions.

According to the NYSERDA Status Report:

The State invests RGGI proceeds to support comprehensive strategies that best achieve the RGGI CO2 emission reduction goals. These strategies aim to reduce global climate change and pollution through energy efficiency, renewable energy, and carbon abatement technology. Deploying commercially available renewable energy and energy efficiency technologies help to reduce greenhouse gas (GHG) emissions from both electricity and other energy sources in the short term. To move the State toward a more sustainable future, RGGI funds are used to empower communities to make decisions that prompt the use of cleaner and more energy-efficient technologies that lead to lower carbon emissions as well as economic and societal co-benefits. RGGI helps to build capacity for long-term carbon reduction by training workers and partnering with industry. Using innovative financing, RGGI supports the pursuit of cleaner, more efficient energy systems and encourages investment to stimulate entrepreneurial growth of clean energy companies. All of these activities use funds in ways that accelerate the uptake of low-to-zero emitting technologies.

That is the theory. In practice the results have been mixed and even environmental advocacy organizations have voiced their displeasure.  For example, Environmental Advocates of New York (EANY) recently released a report, “RGGI at a Crossroads”, that details the allocation of funds raised by the Regional Greenhouse Gas Initiative (RGGI) in New York State.  I published a post that agreed with their findings.  The overview for RGGI at a Crossroads states:

“For the past seven years, the Cuomo Administration has used funding made available to New York through the Regional Greenhouse Gas Initiative (RGGI) for some authentic climate mitigation purposes as well as some highly questionable ones. While programs like Green Jobs – Green New York, 76West, and the Drive Clean Rebate owe their success to RGGI funding; the Governor has also diverted RGGI funds to subsidize power rates for Long Islanders and plug budget holes. These diversions are bad policy precedents that squander the opportunity to better the environment. An upcoming revision to state regulations offers the Governor an opportunity to take his hand out of the cookie jar and invest RGGI proceeds in a way that will propel New York to the forefront of climate justice.”

However, while I agree that if RGGI is supposed to be a CO2 reduction program that the auction proceeds should only be used for CO2 emissions reductions, I am less impressed with the value of their investments than EANY as I will show in the following.

Social Cost of Carbon

In order to put the value of RGGI investments in context of potential benefits some background on the social cost of carbon (SCC) is necessary.  Regulators necessarily have to balance costs and benefits.  This parameter was developed to estimate the cost of the long-term (that is to say hundreds of years) damage done by a ton of carbon dioxide (CO2) emitted today.  This dollar figure also represents the benefit of a CO2 reduction. I have posted on some of the issues with this parameter but for the purposes of this post you need to know that the values range widely depending on assumptions.  For example, if you use a discount rate of 3% and consider global benefits like the Obama-era Environmental Protection Agency (EPA) did then the current SCC value is $50.  On the other hand, the current Administration EPA SCC value for SCC is $7 for a 3% discount rate and $2 for a 5% discount rate that represents only benefits to the United States.  Needless to say, New York’s preference is to use the $50 value.

December 2018 Semi-Annual Report Status Report

According to the Status Report, New York State has accumulated $1,184,631,180 either from direct auction proceeds from the sale of more than 366 million CO2 allowances or interest earnings as of December 31, 2018.  Note that while the allowance prices are increasing over time the total number of allowances sold is decreasing.  For the three-year control period ending in 2011 144,305,904 allowances were sold but in the control period ending in 2017 only 72,401,365 were sold.  The increase in allowance costs does not offset the drop in allowances sold so annual proceeds are decreasing over time.

The Status Report  2018 Investment Summary Table 1 deserves special comment.  The lifetime net energy savings 62,466,470 mmBtu, renewable generation 8,243,824 MWh, net efficiency electricity savings 17,446,899 MWh, and net CO2 emissions reductions of 20,762,489 tons are all big numbers.  When you consider that total investments are $558 million you could be led to believe that the cost benefit ratio dollars invested per ton of CO2 reduced is $26.88.  That is well below the NY SCC target of $50.  However, using expected lifetime savings is bogus.

The CLCPA has a target to reduce annual CO2 emissions to zero compared to the 1990 emissions.  The key is that we need to know what the program investments do to annual emissions.  The New York State Energy Research and Development Authority Patterns and Trends document provides CO2 emissions data and that shows that in 1990 the NY total was 235.8 million metric tons.  In order to assess progress against that goal annualized reductions are the only ones that matter so the only cost benefit values that matter are for annual reductions.

The Status Report  2018 Investment Summary Table 2 and Table 2 notes provides the information necessary to determine progress relative to the goals.  There are six program categories: Green Jobs – Green New York, Energy Efficiency, Renewable Energy, Community Clean Energy, Innovative GHG Abatement Strategies, and Clean Energy Fund. The Consolidated Summary of Expected Cumulative Annualized Program Benefits through 31 December 2018 table summarizes the benefits and costs for those categories.  Note that the cost benefit ratio is $463.54, nearly ten times the NY SCC value.

Green Jobs – Green New York

As shown in my Consolidated Summary table total program costs were $172.5 million through the end of 2018 for programs that reduced CO2 264,048 tons for a cost benefit ratio of $653.29 per ton reduced.  Green Jobs – Green New York provides “funding for energy assessments, low-cost financing for energy upgrades, and technical and financial support to develop a clean energy workforce”. It is administered by NYSERDA and made available by the Green Jobs – Green New York Act of 2009.  As I recall the administrative costs associated with this program are notable.

Energy Efficiency

As shown in my Consolidated Summary table total program costs were $260.2 million through the end of 2018 for programs that reduced CO2 611,898 tons for a cost benefit ratio of $425.23 per ton reduced.  These programs provide “comprehensive energy efficiency services for single and multifamily existing buildings and new construction, including low-income households”. RGGI funds are provided to the Long Island Power Authority support energy efficiency programs administered by PSEG Long Island.  RGGI funds were also used to “fill gaps in residential energy efficiency services, offering incentives to implement energy efficiency measures related to petroleum fuel opportunities, or opportunities on Long Island and municipal electric districts”.

Renewable Energy

As shown in my Consolidated Summary table total program costs were $79.9 million through the end of 2018 for programs that reduced CO2 144,408 tons for a cost benefit ratio of $553.29 per ton reduced.  One program in this category tries to increase the use of biomass for renewable heating. NY-Sun provides “declining incentives for the installation of systems and works to reduce solar electric balance-of-system costs through technology advancements, streamlined processes, and customer aggregation models” with a goal to “achieve a sustainable solar industry that does not depend on incentives”.  There is another solar incentive program that funded “221 solar electric system installations outside of Long Island”.  The Advanced Renewable Energy Program supports “projects that foster the market introduction of a broad range of promising new and advanced renewable energy technologies, including advanced biomass, tidal, and offshore wind technologies”.

Finally, in a vivid example of Cuomo Administration creative accounting, RGGI funds the New York Generation Attribute Tracking System that records “electricity generation attribute information within NYS, and processes generation attribute information from energy imported and consumed within the State as a basis for creating tradable generation attribute certificates”.  Although there is a tortuous path linked to emission reductions linked to this program it really is an example of the type of program that really should be funded by the State and not RGGI that the EANY RGGI at a Crossroads report described.

Community Clean Energy

As shown in my Consolidated Summary table total program costs were $21.8 million through the end of 2018 for programs that reduced CO2 130,662 tons for a cost benefit ratio of $166.84 per ton reduced.  There are seven component programs in this general category.  It is notable that this category’s emphasis on funding specific GHG reduction projects makes this most cost-effective program area.  Mind you the Reforming the Energy Vision Campus Competition Program component award for Bard College’s Micro Hydro for Macro Impact project that will use local dams to develop micro hydropower is probably not going to help much meet the CLCPA target.  The Status Report breathlessly notes that “the  project is expected to avoid 335 metric tons of GHG emissions annually, equivalent to taking 70 cars off the road”.

Innovative GHG Abatement Strategies

As shown in my Consolidated Summary table total program costs were $6.2 million through the end of 2018 for programs that reduced CO2 1,804 tons for a cost benefit ratio of $3,436.81 per ton reduced.  This includes a longer-term Industrial innovations program that “supports development and demonstration of technologies with substantial GHG reduction potential and technologies relevant to NYS manufacturing industries and building systems”.   Another creative accounting effort includes the Climate Research and Analysis Program that “supports research studies, demonstrations, policy research and analyses, and outreach and education efforts”. According to the report these activities address “critical climate change related problems facing the State and the region, including the needs of environmental justice communities”.  All well and good but this is a mission of NYSERDA and should be funded out of the Administration’s budget and not detract from the RGGI mission to reduce CO2 emissions.  Also included in this program is the Clean Energy Business Development program that “seeks to support emerging business opportunities in clean energy and environmental technologies while maintaining the goal of carbon mitigation”.  Perhaps I have been reading to much of this but I am getting a wift of crony capitalism for the well-connected in Albany.  There are several programs similar to those listed here.

Clean Energy Fund

As shown in my Consolidated Summary table total program costs were $17.4 million through the end of 2018 for programs that reduced CO2 50,961 tons for a cost benefit ratio of $341.44 per ton reduced.  This program area is not described in the document.

Cost Recovery Fee

For your information, this is another example of New York State bureaucracy at its best.  The New York State Cost Recovery Fee is imposed on the New York State Energy Research and Development Authority (NYSERDA) by law to reimburse the State for the cost attributable to the provision of central government services to NYSERDA.  The available RGGI funding budget at the end of 2018 is $1.245 billion and $11.9 million is reimbursed to the state for the privilege of adding money for reducing emissions.

Remarks

There is a wide range of cost benefit ratios for the six program areas. At the high end Innovative GHG Abatement Strategies have a cost benefit ratio of $3,347 per ton reduced and the at the low end Community Clean Energy has a cost benefit ratio of $167 per ton reduced. Overall the cost benefit ratio was $464.  The cost benefit ratios can be used to estimate the total costs to meet the CLCPA target to eliminate CO2 emissions from the NY electric sector.  The  Status Report cost to reduce NYS fossil fuel 2018 CO2 emissions to zero table multiplies the 2018 CO2 emissions from the electric sector (27,786,614 tons) by the cost benefit ratios.  If NY eliminates CO2 emissions using the approaches in use for the RGGI investments, the total costs range from $4.6 billion to $95 billion with an overall cost of $12.9 billion.

Another important point is that there is likely a reason for the range of cost benefit ratios.  At the high end, the GHG Abatement Strategies category emphasizes long-term research and development.  Because this research could make a cost breakthrough the investments make sense.  Looking at the other categories it appears that the more investments are focused on direct reductions rather than indirect investments the better the cost benefit ratio.  For example, the best ratio is in Community Clean Energy and that category includes direct support for renewable energy projects.  Although the Renewable Energy category would seemingly meet the criteria for direct support, remember that the Cuomo Administration has diverted funds for other program areas that do not directly support climate mitigation efforts.  The Energy Efficiency category is a better example of indirect support.  Investments in this category do not directly reduce emissions.  Instead reducing energy use reduces the need for energy production and indirectly reduces emissions.

Conclusions

The most important conclusion is that none of the NYSERDA investments of RGGI auction proceeds meet the social cost of carbon criterion of a cost-effective benefit.  New York proposes to use the Obama era SCC value which is $50 in 2019 and the best investment category cost benefit ratio is three times greater than that value.  The cost benefit ratio for all the investments is over nine times greater than the $50 SCC value.

I also believe that there are important ramifications to the apparent reason for the range of cost-benefit ratios.  I think that the more focus on direct investments in emission reductions the better the ratio.  On one hand it could be seen as intuitively obvious but the point is that carbon pricing proposals rely on a completely indirect impetus for emission reductions.  As such those proposals, as theoretically appealing as they may be, may be much less cost effective than suggested.

The Status Report includes a table that lists the expected lifetime benefits of the projects.  Because our primary concern is meeting annual limits those numbers are at best a distraction and at worst a coverup attempt of the poor return on investments.

Finally, the total costs are staggering.  I estimate that the projected costs will be over $25 billion for just the electric sector to meet the CLCPA targets.  If NY relies on the approaches used by NYSERDA for the RGGI investments to eliminate fossil fuel CO2 emissions, the overall cost is $12.9 billion.  I earlier made an estimate of the costs for energy storage if fossil fuels generation is eliminated and that came out to $12.5 billion.

New York Resource Adequacy Proceeding Comments

The New York State Public Service Commission (PSC) issued an order commencing a proceeding to examine how to reconcile resource adequacy programs and the State’s renewable energy and environmental emission reduction goals. This post describes the comments I submitted in this proceeding.

Materials and information are available in the Department of Public Services (DPS) resource adequacy matters docket Case 19-E-0530.  .  According to the Order Instituting Proceeding and Soliciting Comments, the inquiry is “necessitated by the Commission’s statutory obligations to ensure the provision of safe and adequate service at just and reasonable rates. Costs to consumers are a primary and ultimate consideration, recognizing that the necessary investments in resources must have sound economics.”

The PSC order solicited comments on the following questions.  Does the New York Independent System Operator (NYISO) have sufficient resource adequacy evaluation mechanisms in place to deal with the State’s ambitious renewable energy and environmental emission reduction goals?  Do the policies and market structure mechanisms insure just and reasonable consumer rates? There were several specific questions about existing products and their value with respect to costs.  Finally, there was a general question about the State’s role with respect to resource adequacy and request for recommendations for what to do next.

I submitted comments because I am not sure that the Climate Leadership and Community Protection Act (CLCPA) can be implemented so that it does not jeopardize safe and adequate energy service at just and reasonable rates. I based the comments on evaluations I did for previous posts on Solar Issues in Upstate New York , CLCPA Solar and Wind Capacity Requirements and CLCPA Energy Storage Requirements.

My filed documents (dated 9/16/2019 as a filing on behalf of an individual) illustrate my concerns with two examples.  I prepared a white paper that provides an initial estimate of the likely energy storage component requirement based on real world data.  It shows that at night when winds are light the energy produced from these sources will have to be supplanted with stored energy if New York shuts down all its fossil generation.  Given the extraordinary cost of battery energy storage I estimate that the batteries alone will cost over $12 billion to replace existing fossil generation and Indian Point after it retires.  The second example describes a potential problem with winter peak loads once the CLCPA is implemented.  Because of the stringency of the law, home heating is going to have to be electrified.  The preferred retrofit option is an air source heat pump.  However, they don’t produce heat when the temperature gets below zero so homeowners will need a backup system and the cheapest alternative is radiant heat which is much more inefficient.  As a result there will be a spike in electrical load that cannot be avoided.

Both examples used data from the NYS Mesonet.  I believe the best way to determine resource adequacy is to base the analysis on historical meteorological information as shown in the examples.  In order to determine the amount of energy storage you have to calculate how much wind and solar power is available and when.  In order to determine the effect of air source heat pumps meteorological data from the winter 2017-2018 peak load period was used.  I recommended that historical meteorological data be used to characterize potential solar and wind energy production to determine the feasibility of the CLCPA emission reduction target that eliminates emissions from electricity production by 2040.

In addition, I believe that the State needs to do a cumulative environmental impact assessment of this regulation.  The problem is that while an individual industrial wind facility or solar facility may not have a significant environmental impact the cumulative impact of all the facilities necessary to provide enough power to meet the reliability needs of the state could have significant environmental impacts.  For example, if one raptor gets killed by every ten wind turbines that might be acceptable but if we need a thousand wind turbines is one hundred raptors per year acceptable?

My final recommendation is for an independent review of the findings of the feasibility studies.  The CLCPA is the result of political pandering and the likelihood that a feasibility study would be subject to political influence is high.  The only way I can think of to prevent that is to establish an independent group to review the findings.  Membership should deliberately be chosen to represent both “sides” of vested interests in the outcomes.  They may not be able to come agree but their evaluation report can list where they have agreed to disagree and that will be useful for the public.

I think it is obvious that the resource adequacy proceeding must determine if the CLCPA can be implemented such that it does not jeopardize safe and adequate energy service at just and reasonable rates.  If renewable resources and energy storage are inadequate during the winter peak, then safe and adequate energy service could easily be jeopardized.  No jurisdiction has ever successfully reduced greenhouse gas emissions by developing renewable energy resources and managed to keep prices down and I see no reason that New York will be able to reverse that result.  Most importantly, the increase in energy prices will affect those who can least afford the increased costs.

If you are a resident of New York I ask that you submit comments to the DPS resource adequacy matters docket Case 19-E-0530 supporting the request for comprehensive, independent feasibility and cumulative environmental impact assessments.

CLCPA Energy Storage Requirements

Updated 31 August, 2019 in response to comments – changes in italics

On July 18, 2019 New York Governor Andrew Cuomo signed the Climate Leadership and Community Protection Act (CLCPA), which establishes targets for decreasing greenhouse gas emissions, increasing renewable electricity production, and improving energy efficiency. This is one of a series of posts on the ramifications of the “most aggressive climate law in the United States”. This post lays out an initial guess for the energy storage needed for CLCPA wind and solar resources at levels greater than announced to date.

CLCPA Target Overview

The Citizens Budget Commission developed an overview of the CLCPA targets in Green in Perspective: 6 Facts to Help New Yorkers Understand the Climate Leadership and Community Protection Act. The goals of the law are truly aspirational:

Reduce greenhouse gas (GHG) emissions:

    • Reduce GHG emissions to 60 percent of 1990 emissions levels in 2030;
    • Generate zero GHG emissions from electricity production by 2040; and
    • Ensure GHG emissions are less than 15 percent of 1990 emissions levels in 2050, with offsets to reduce net emissions to zero.
      • GHG offsets means that for every ton emitted into the air one ton is removed via GHG capture of some sort. For example, a company or individual can pay a landowner to leave trees standing that would otherwise be removed or plant additional trees to offset GHG emissions.

Increase renewable electricity:

    • Increase renewable sources to 70 percent by 2030; and

Develop or support:

    • 9 gigawatts (GW) of offshore wind electric generation by 2035;
    • 6 GW of distributed photovoltaic solar generation by 2025; and
    • 3 GW of energy storage capacity by 2030.
    • Conserve 185 trillion British thermal units (TBTUs) of annual end-use energy use by 2025, of which at least 20 percent should be from energy efficiency improvements in disadvantaged communities.
    • The CLCPA also requires between 35 percent and 40 percent of spending on clean energy or efficiency programs be in disadvantaged communities and mandates an air monitoring program in at least four such communities.

Simple Wind and Solar Capacity Model

I believe that CLCPA advocates have not figured out that an electric system that is completely dependent upon renewables will require much more energy storage than commonly assumed. I follow Michel at the Trust, yet Verify blog because he evaluates Belgian “green” technology quantitatively and has given me many insights into potential issues that might also arise in New York. Moreover, like me he prefers using real-world data. In a recent post Michel evaluated the potential effect of increased electricity production from intermittent energy sources in Belgium with a simple solar and wind capacity increase data analysis “model”. He downloaded solar generation, wind generation, and total load data for an entire year. The solar and wind data were summed together for every time period, in his case 15 minutes. Then he projected solar and wind by multiplying the observed sum by different values. The results graphically showed that adding a lot more intermittent wind and solar capacity increases production peaks but does not increase production nearly as much during production valleys. In addition, the results show that as renewable capacity increases more balancing mechanisms will be required.

In a previous post I adapted his methodology to New York State for 2018 with his help and analyzed data from August 2018 which represents the month with the most deficit periods. I believe that the CLCPA claims that renewable energy can completely replace the current fossil fuel load are extraordinary. As such, its proponents have to provide extraordinary evidence that it can work. In this post I look at the required balancing mechanisms for solar and wind to replace existing fossil generation in New York.

In the previous post I estimated how much energy storage may be required by incorporating reasonable assumptions about the future using assumptions about the availability of nuclear, solar, and wind using the Trust, yet Verify simple approach. The biggest future change is the forced shutdown of the Indian Pont nuclear facility in the next several years. In my previous analysis I used “best case” estimates that assumed that solar and wind are available at their rated capacities every hour in my test period. Because those sources are intermittent the amount of time when they are available at full load is not constant. For example, solar availability varies during the day and over the month of August there will be periods when the wind is blowing less than optimal. On the other hand assuming that Indian Point capacity is not available at its rated capability is a reasonable assumption because it usually runs at full load except for maintenance.

The ultimate result in that post estimated the wind and solar capacity from an aggressive CLCPA implementation plan.  In that post and this one I want to estimate the least amount of energy storage needed in the future so I increased renewable additions more than have been announced to date.  I don’t think there will be any significant increase in hydro or the other renewable category sources of methane, refuse, or wood firing and they are not intermittent so I made no changes to those categories. Because New York is shutting down 2,067 MW of nuclear at Indian Point in the next several years I subtracted that amount from every hour. I multiplied the existing onshore wind resource twenty times to estimate future availability. The CLCPA plan currently calls for 9,000 MW of off-shore wind power but I doubled that amount. The CLCPA plan also calls for 6,000 MW of solar PV power but I doubled that amount too. In order to account for daylight I added 6,000 MW to every time period from 0700 to 1955. In order to account for wind intermittency I made some assumptions about availability and scaled the offshore wind resource down when the on shore resource was below half of the observed maximum.

As shown in August 2018 Simple Model Aggressive CLCPA Renewables vs. Fossil Load, there are many periods of surpluses (all the renewables minus the existing fossil resource shown in blue) but there are still periods with deficits even with the best case assumptions about renewable availability. The remainder of this post examines one of the deficit periods in more detail.

Refined Renewable Resource Estimates.

In order to more realistically estimate the potential renewable resources available during one of these periods real world observations need to be included. For this analysis it is assumed that the onshore wind assumption that additional wind would be proportional to existing wind is adequate. However, I did try to modify the offshore wind and the solar components. In order to do that I chose a shorter period and collected meteorological data to get a better estimate of potential solar and off-shore wind capacity. I arbitrarily chose a deficit period on the early morning of August 8, 2018 when winds were light and the sun was either not up or not at full strength to look at the potential magnitude of energy storage required to balance the deficit.

In order to characterize the off-shore wind potential I found a National Oceanic and Atmospheric Administration buoy located 30 NM south of Islip, NY (40°15’3″ N 73°9’52” W) that I used to represent NY offshore wind resource availability. I downloaded hourly NDBC data for 2018 and scanned the data. As noted August 8 had light winds. The weather map for 8 August 2019 shows that there was a large high pressure system dominating the east coast. As a result, I am confident that this buoy characterizes NY offshore wind speeds and thus the resource of NY offshore wind.

This analysis characterizes wind energy as a function of observed wind as follows. I found a wind turbine power output variation curve, developed a straight line equation for the curve and estimated that the output of 18,000 MW of New York offshore wind equals 1714 times the wind speed minus 6000. I assumed that the observed wind speed at the hub height is proportional to the logarithm of the height above ground. For the calculations I assumed a hub height of 85 m and a surface roughness of 0.0003 while the buoy anemometer height is 4 m. The NY offshore wind output capacity in MW was calculated for every hour using this approach.

The solar output is a function of the observed solar irradiation in watts per meter squared. I assumed that 12,000 MW of solar capacity could be added in response to the CLCPA but that will be installed state wide. I downloaded solar insolation maps from the NYS Mesonet archive. I accessed the solar irradiation map in the spatial analysis directory to get solar irradiation maps and as an added bonus the maps also include gridded winds. NYS Mesonet Solar Irradiance Map 8 August 2018 at 1525 UTC is an example of these maps and can be reproduced at this link. In this case there is a lot of variation across the state which makes a state-wide single number estimate of solar irradiation weak but sufficient for this first cut analysis. I estimate that the highest irradiance was 900 W/m2 and the lowest was around 100 W/m2. To do this right one would have to determine where the solar panels might be located to weight the observations. For this hour I guessed 600 W/m2 for the state. I assumed that the 12,000 MW of solar cells produced 12,000 MW when the solar irradiation equals 800 watts per square meter (the PVUSA test condition) and I did not account for any other factors such as the cell temperature or any losses. So my naïve formula for solar output was simply the observed input solar irradiation times 12,000 divided by 800.

The Deficit Example of Simple Model of Intermittent Wind and Solar Generation vs. Fossil Generation and Indian Point Shutdown table lists 5-minute from 0300 to 0955 EDT on August 18, 2018 when the assumed aggressive CLCPA renewable capacity could not replace the existing fossil capacity and loss of the Indian Point nuclear facility.   The first three data columns list the total NYISO state-wide generation load, the NYISO total load, and the fossil generation load. The next four columns list the onshore wind load, CLCPA solar load, and the CLCPE off-shore wind load calculated as described above with the total shown in another column. The next three columns present the meteorological data used. Finally the sum of the onshore wind load, CLCPA solar load, and the CLCPE off-shore wind load minus the existing fossil and the Indian Point capacity of 2,067 MW is listed. In this period all the five-minute periods were negative. The first conclusion is that the post-CLCPA constraint may not be the peak load but instead a night-time low wind period.

Energy Storage Requirements and Costs

I have never seen an analysis that attempted to determine how much storage capacity would be required to meet a real-world generation capacity deficit. Clearly the total capacity has to exceed the observed deficit. In this case I estimate that the total deficit equals the sum of the average of the 12 5-minute deficits each hour or 33,548 MWh. I think that the maximum output of the energy storage has to equal the largest 5-minute deficit or 8,131 MW.

After that it is not clear how best to divvy up the energy storage requirements. I assumed that the least cost energy storage approach would maximize energy storage duration based on lower costs per MWh in a recently released report from the National Renewable Energy Lab (NREL): “2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Cost Benchmark”. I reported on my estimates for different duration energy storage costs in a post at What’s Up With That.  In this analysis I included the costs of the battery and did not include developer costs to site, permit and connect the facility to the grid.

In the Estimated Energy Storage Required and Potential Price table I summarize the energy storage needs and my projection for the amount of different duration energy storage needed for the seven hour deficit period with my over-built renewables future scenario. In the first hour of the deficit period the hourly average was 1,140 MW but the peak was 1,390 MW so I project 1,400 MW at 7-hour duration could be used. The next hour had the peak 5-minute deficit of 8,131 MW. In order to meet that and subsequent hours I project 1,300 MW at 6-hour duration, 2,750 MW at 5-hour duration and 2,690 MW at 1-hour duration would cover that peak and most of the subsequent deficits. In order to cover subsequent peaks I added 1,200 MW at 2-hour duration and 620 MW at 1-hour duration. The total MWh stored (37,160) exceeds the observed total deficit (33,548) by 3,612 so there is a lot of room for refining this analysis but that has to be weighed against the fact that no attempt was made to find the worst case period which has to be done at some point.

The total costs are staggering. In order to cover the deficit of energy produced by solar and wind resources at an aggressive level over current on-shore wind and proposed CLCPA solar and wind, $12.5 billion dollars of energy storage will be required to replace existing fossil generation and Indian Point. Nobody in the State has suggested how much energy storage will be required and the 3,000 MW of energy storage capacity by 2030 goal has not included any duration goals. In context 11,260 MW of energy storage capacity is needed according to this analysis and there are large amounts of seven, six and five hour duration energy storage capacity required.  Needless to say, no State estimates have covered the expected costs of their storage goal much less what might ultimately be needed.

Conclusion

In order to determine the cost and feasibility of the CLCPA the State needs to do a similar analysis using real world data and historical load data. The analysis should attempt to site likely renewable energy resources and use the NYS Mesonet data to determine potential resource availability for as long a period as possible. The goal of the analysis would be to determine the energy storage capacity required to meet the CLCPA so that a cost estimate can be prepared.

CLCPA Solar and Wind Capacity Requirements

CLCPA Solar and Wind Capacity Requirements

On July 18, 2019 New York Governor Andrew Cuomo signed the Climate Leadership and Community Protection Act (CLCPA), which establishes targets for decreasing greenhouse gas emissions, increasing renewable electricity production, and improving energy efficiency. This is one of a series of posts on the ramifications of the “most aggressive climate law in the United States”.  This post addresses the wind and solar capacity necessary to implement the CLCPA by looking at a “best case” scenario.

CLCPA Target Overview

The Citizens Budget Commission developed an overview of the CLCPA targets in Green in Perspective: 6 Facts to Help New Yorkers Understand the Climate Leadership and Community Protection Act. The goals of the law are truly aspirational:

Reduce greenhouse gas (GHG) emissions:

    • Reduce GHG emissions to 60 percent of 1990 emissions levels in 2030;
    • Generate zero GHG emissions from electricity production by 2040; and
    • Ensure GHG emissions are less than 15 percent of 1990 emissions levels in 2050, with offsets to reduce net emissions to zero.
    • GHG offsets means that for every ton emitted into the air one ton is removed via GHG capture of some sort. For example, a company or individual can pay a landowner to leave trees standing that would otherwise be removed or plant additional trees to offset GHG emissions.

Increase renewable electricity:

    • Increase renewable sources to 70 percent by 2030; and

Develop or support:

    • 9 gigawatts (GW) of offshore wind electric generation by 2035;
    • 6 GW of distributed photovoltaic solar generation by 2025; and
    • 3 GW of energy storage capacity by 2030.
    • Conserve 185 trillion British thermal units (TBTUs) of annual end-use energy use by 2025, of which at least 20 percent should be from energy efficiency improvements in disadvantaged communities.
    • The CLCPA also requires between 35 percent and 40 percent of spending on clean energy or efficiency programs be in disadvantaged communities and mandates an air monitoring program in at least four such communities.

Simple Wind and Solar Capacity Model

I follow Michel at the Trust, yet Verify blog because he evaluates Belgian “green” technology quantitatively and has given many insights into potential issues that might also arise in New York. Moreover, like me he prefers working with real-world data. In a recent post Michel evaluated the potential effect of increased electricity production from intermittent energy sources with a simple solar and wind capacity increase data analysis model. He down-loaded solar generation, wind generation, and total load data for an entire year from the ELIA site. The solar and wind data were summed together for every time period, in his case 15 minutes. Then he projected solar and wind resources by multiplying the observed sum by different values.

Please go to the post and review the methodology and results. The results show that additional intermittent wind and solar capacity increases production peaks but does not increase production nearly as much during production valleys. In addition, the results show that as capacity increases more balancing mechanisms will be required. In my opinion the best part of the analysis was that the graphical results clearly showed these impacts.

As you can see in the comments I complimented Michel for the clarity of the analysis and asked if his model could be applied with New York data. He responded that it would be possible and I sent a link to the New York production data. I had intended to process the data for him to input but Michel graciously did the processing himself. (Fortunately for me because I no longer have access to data processing software, apparently I am the only one who wants to be able to use FORTRAN, so I have to brute force process data in a spreadsheet.) His results for 15x wind plus other renewables relative to total load are reproduced here.

Simple Wind and Solar Capacity Model with New York Data

Michel’s results used the historical data available at the New York Independent System Operator (NYISO) real-time fuel mix data dashboard. I will respond to his comments in the original post in more detail here.

Michel correctly determined that I only want to look at wind and “other renewables”.   I agree that the intermittent source results will not be as clear-cut as the Belgian data where wind and solar are registered on their own, showing the pure effect of the intermittent energy sources. The problem trying to estimate the effect of New York solar capacity increases is that solar is buried in “other renewables” which includes methane, refuse, or wood firing. Those other sources are not intermittent so we get mixed signals.

Michel used solar and wind capacity data but could not find corresponding New York capacity data, so he didn’t correct for potentially increasing capacity over the year. Unfortunately the NYISO data base does not provide a nice spreadsheet format capacity report like the ELIA generating facilities link. However, I don’t think there is enough added capacity to make a difference for this analysis. On the other hand Michel found that Belgian wind capacity increased by 500 MW and solar capacity increased by over 400 MW so he had to correct for that or the results would have been flawed.

Michel notes that the result is quite different from the Belgian data. In the first place New York is bigger. The ELIA link notes that total capacity in Belgium is 15,660 MW. The NYISO data are buried in Table III-3a Capability by Zone and Type in their annual Load and Capacity Data Report. In the summer the total capacity in New York was 39,245 MW in 2019. Secondly, peak loads are different. New York State production is highest in summer and lower in winter, just the opposite as Belgium. He correctly infers that air conditioning drives the peak load to the summer.

He correctly assumed that there is less solar capacity relative to wind in New York because solar capacity is so small that it does not have its own category. In the NYISO capability table there are only 31.5 MW of solar capacity. The ELIA solar-PV generation data link notes that “Elia has updated the register of total installed solar capacity in Belgium. As a result, the installed solar capacity increases with 416.27 MW” well over ten times as much as NY. However, the link also states that the monitored solar PV capacity is 3,369.05 MW. I assume that this refers to distributed solar PV capacity and also suggests the New York would be well served to start monitoring this capacity as well. The NYISO claims that there are 1,862 MW of solar PV nameplate capacity behind the meter.

Michel observes that consumption is higher in New York than Belgium and the share of intermittent energy smaller. As a result, the point where surpluses and shortages cancel out (without taking the losses into account) will be higher (somewhat higher than 25.5x, versus 8.5x for Belgium).

New York Simple Wind and Solar Capacity Model for August 2018

Michel’s model results indicate that August 2018 has many shortages so I looked at August 2018 data myself using a spreadsheet. My primary concern is the effect of the CLCPA on future capacity keeping in mind that the target is to eliminate fossil fuel use so I compared solar and wind only to fossil load, i.e., the output from the generators listed as fossil in Table III-3a: Capability by Zone and Type. Using the same data as Michel but only using renewables to replace fossil load gives a similar result. Note in the table August 2018 Simple Model 26 x New York Wind + Other Renewables vs. fossil load that surpluses are blue and deficits are red. There are more surpluses simply because fossil load is less than total load. Note that even if the wind and other renewable categories are increased 26 times the current rate existing fossil cannot be replaced without a lot of shortages.

I believe that the CLCPA claims that renewable energy can completely replace the current fossil fuel load are extraordinary. As such, its proponents have to provide extraordinary evidence that it can work. I have tried to modify the data to incorporate reasonable assumptions about the future using “best case” assumptions about the availability of solar and wind. These are “best case” estimates because I assumed that solar and wind are available at their rated capacities every hour in my test period. Because those sources are intermittent the amount of time when they are available at full load is not constant. For example, solar availability varies during the day and over the month of August there will be periods when the wind is blowing less than optimal. On the other hand assuming that Indian Point capacity is not available at its rated capability is a reasonable assumption because it usually runs at full load except for maintenance.

I don’t think there will be any significant increase in hydro or the other renewable category sources of methane, refuse, or wood firing and they are not intermittent so I made no changes to those categories. Incredibly New York is shutting down 2,067 MW of nuclear at Indian Point in the next several years because public perception of nuclear is a more important consideration than the existential threat of climate change. I subtracted that amount from every hour. The CLCPA plan currently calls for 9,000 MW of off-shore wind power so I added that amount to every hour. The CLCPA plan also calls for 6,000 MW of solar PV power. In order to account for daylight I added 6,000 MW to every time period from 0700 to 1955. The results in August 2018 Simple Model CLCPA Renewables vs. fossil load show the same thing: adding solar and wind capacity significantly adds to surplus loads but does not reduce the deficits nearly as much even if it were available at the full capacity every hour.

I tried to estimate capacity from an even more aggressive implementation plan (doubling the offshore wind and solar additions to 18,000 MW and 12,000 MW respectively). However, doing that would show positive numbers unless there is a correction for off shore wind intermittency if I simply added another 9,000 MW of wind to every hour. In order to account for wind intermittency I scaled the offshore wind resource down when the on shore resource reached half of the observed maximum. I scaled the resource proportional to the observed decrease in the 99th to the 70th percentile on-shore resource to the 50th. For example, when the on shore wind resource was at the 50th percentile I estimated that the off-shore wind resource was proportional to the 99th divided by the maximum observed onshore wind resource. I made similar corrections for even lower levels and I believe this is conservative. Again, as shown in August 2018 Simple Model Aggressive CLCPA Renewables vs. Fossil Load, the surplus increases by adding solar and wind capacity at full capacity but we still will have to deal with significant deficits.

My takeaway point is that even with unrealistic assumptions about the “best case” availability of solar and wind capacity, there are periods with significant deficits. In order to prove the extraordinary claim that solar and wind can replace existing fossil the State of New York, a similar type of analysis using actual data to estimate realistic energy production must be done. That is the only way to provide the extraordinary proof showing just how much energy storage will be required to prevent deficits. I will take a preliminary look at the energy storage ramifications of this in a future post.

 

Pragmatic Take on the Climate and Community Protection Act

I blog on pragmatic environmentalism because I am convinced that it is necessary to balance environmental impacts and public policy. This means that evidence-based environmental risks and benefits (both environmental and otherwise) of issues need to be considered. I have developed a set of principles that under lie my concerns. New York’s Climate and Community Protection Act exemplifies the opposite of a pragmatic approach to the problem of climate change. This post references my pragmatic environmentalist principles to explain my concerns.

In the 2019-2020 regular legislative sessions the New York State (NYS) legislature is debating the Climate and Community Protection Act (CCPA). The fundamental problem with this legislation is that it calls for a statewide greenhouse gas emissions limit of 0% of 1990 emissions in 2050.

One of my biggest problems with the CCPA is that the legislation sets its goal before it requires a scoping plan explaining how this will be done and how much it will cost. In almost all environmental issues there are two sides. Pragmatic environmentalism is all about balancing the risks and benefits of the two sides of the issue. In order to do that you have to show your work before you implement the policy and clearly this is not the case with the CCPA.

The rationale for the CCPA trots out many extreme weather events attributed to climate change. These brief sound bite descriptions only tell one side of the story. As a result they frequently are misleading, are not nuanced, or flat out wrong. The level of effort necessary to respond to them is large. As Alberto Brandolini put it: “The amount of energy necessary to refute BS is an order of magnitude bigger than to produce it.” In addition, the more extreme a climate or weather record is, the greater the contribution of natural variability, which is known as the Cliff Mass Golden Rule of Climate Extremes.

Ultimately advocates for this legislation ignore economic realities. Roger Pielke, Jr says the “iron law” simply states that while people are often willing to pay some price for achieving environmental objectives, that willingness has its limits.  There is no question in my mind that this legislation will test that willingness. Furthermore, Gresham’s Law of Green Energy observes that “bad money drives out the good.” The green energy subsidies necessary to implement the CCPA transfer wealth and do not create wealth. The subsidies or “bad” money take money out of the system that was “good” inasmuch as it was being used productively. Subsidized renewable resources will drive out competitive generators, lead to higher electric prices, and reduce economic growth.

Whatever the supporters say about costs the fact is that they will be significant. This legislation is presented as necessary but does not does not consider that in order to implement the initiatives tradeoffs are required simply because the resources available are finite. We can do almost anything we want, but we can’t do everything. Building resiliency to historical weather extremes seems to me to be a much better expenditure of resources.

 The economics issues are particularly relevant because of the ambitious goal. One of my principles states that: as the pollution control efficiency increases the control cost per ton reduced increases exponentially. This is particularly true for electrical system fossil emissions reductions. In New York the electrical generating plants reduced CO2 emissions 27% by switching from coal and oil to natural gas at essentially no cost because natural gas was cheaper than coal. Replacing natural gas generation to renewables is going to cost more because natural gas is cheaper. (If natural gas was not cheaper then no renewable subsidies would be necessary). Because the renewables are diffuse the transmission grid must be maintained but renewables do not support the grid so at some point that support must be added to the cost of displacing fossil fuels. Because renewables are intermittent at some point energy storage has to be added to the cost further adding to the cost of every incremental displacement. The final displacement to complete elimination of fossil fuel necessarily must expand the need for storage and grid support for the peak periods which are inherently the most difficult.

The final relevant principle is Ridley’s Paradox: Economic damage from man-made ‘climate change’ is illusory whereas damage from man-made ‘policies’ to fight the said change is real. Advocates for climate change action insinuate that all the extreme weather listed in the CCPA cause economic damage but are noticeably short on documenting how much the legislation will affect that weather. No one has ever claimed that hurricanes will not exist when we reduce CO2 emissions so the reality is that climate change might tweak a storm a little stronger. How much does that incremental change influence cost impacts and how much can we affect that change? In the absence of quantitative estimates this economic damage is an illusion. On the other hand, when we, for example, use food for fuel (ethanol subsidies) and drive up energy costs there are real tangible impacts to those least able to pay.

In conclusion my opinion on the legislation is uniformly negative because it has no plan and violates so may pragmatic environmental principles.

NYS Climate Leadership and Community Protection Act Effect on Global Warming

Update: 1 September 2019: Title changed and reference to signed legislation added

In the 2019-2020 regular sessions the New York State (NYS) legislature is debating the Climate and Community Protection Act (CCPA). On July 18, 2019 New York Governor Andrew Cuomo signed the Climate Leadership and Community Protection Act (CLCPA), which establishes targets for decreasing greenhouse gas emissions, increasing renewable electricity production, and improving energy efficiency.  This post calculates how much this legislation will reduce global warming.

The legislation definitions include “Greenhouse gas” means carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and any other substance emitted into the air that may be reasonably anticipated to cause or contribute to anthropogenic climate change.

The emission reduction goals are listed below

  • 75-0107. Statewide greenhouse gas emissions limits.
    1. No later than one year after the effective date of this article, the department shall, pursuant to rules and regulations promulgated after at least one public hearing, establish a statewide greenhouse gas emissions limit as a percentage of 1990 emissions, as estimated pursuant to section 75-0105 of this article, as follows:
          1. 2020: 85% of 1990 emissions.
          2. 2025: 65% of 1990 emissions.
          3. 2030: 50% of 1990 emissions.
          4. 2035: 35% of 1990 emissions.
          5. 2040: 20% of 1990 emissions.
          6. 2045: 10% of 1990 emissions.
          7. 2050: 0% of 1990 emissions.

In the absence of any official quantitative estimate of the impact on global warming from CCPA or any other New York State initiative related to climate change I did my own calculation. I simply adapted data for this emission reduction from the calculations in Analysis of US and State-By-State Carbon Dioxide Emissions and Potential “Savings” In Future Global Temperature and Global Sea Level Rise. This analysis of U.S. and state by state carbon dioxide 2010 emissions relative to global emissions quantifies the relative numbers and the potential “savings” in future global temperature and global sea level rise.   These estimates are based on the MAGICC: Model for the Assessment of Greenhouse-gas Induced Climate Change) so they represent projected changes based on the Intergovernmental Panel on Climate Change estimates. All I did in my calculation was to pro-rate the United States impacts by the ratio of New York emissions divided by United States emissions to determine the effects of a complete cessation of all CO2 emissions in New York State in 1990 proposed in the CCPA plan.

The first step is to quantify NY emissions. The New York State Energy Research and Development Authority Greenhouse Gas Inventory 1990-2015 contains an inventory of historical greenhouse gas emission data from 1990-2015 for New York State’s energy and non-energy sectors. In 1990 the NY total was 218.1 million metric tons. The New York impacts were calculated by the ratio of the NY emissions reductions to the US reductions in the report. For example, the NY % of global total emissions equals the % of US global total (17.88%) times the CCPA reduction emissions goal (218.1) divided by the US emissions (5631.3). The CCPA Potential “Savings” in Future Global Temperature Table lists the results.

These calculations show current growth rate in CO2 emissions from other countries of the world will quickly subsume New York total emissions much less any reductions in New York CO2 emissions. According to data from the U.S. Energy Information Administration (EIA) and based on trends in CO2 these emission reductions will be subsumed by global emissions growth in 99 days. Furthermore, using assumptions based on the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports we can estimate the actual impact to global warming for CCPA. The ultimate impact of the CCPA 100% reduction of 218.1 million metric tons on projected global temperature rise would be a reduction, or a “savings,” of approximately 0.0032°C by the year 2050 and 0.0067°C by the year 2100.

These small numbers have to be put in context. First consider temperature measuring guidance. The National Oceanic & Atmospheric Administration’s Requirements and Standards for NWS Climate Observations states that: “The observer will round the entered data to whole units Fahrenheit”. The nearest whole degree Fahrenheit (0.55°C) is over one hundred seventy times greater than the projected change in temperature in 2050.

Although this change is too small to measure I am sure some will argue that there will nonetheless be some effect on the purported impacts. However if these numbers are put into perspective of temperatures we routinely feel then that argument seems hollow. For example, in Syracuse NY the record high temperature is 102°F and the record low temperature is -26°F so the difference is 128 °F which is over 27,000 times greater than the predicted change in temperature in 2050. The annual seasonal difference ranges from the highest daily average of 71.6°F to the lowest daily average of 23.2°F, or a difference of 48.4°F which is over 10,000 times greater than the predicted change in temperature in 2050. The average difference between the average daily high and average daily low temperature is 10.4°F or nearly 4,000 times greater than the predicted change in temperature in 2050. Clearly the projected temperature change is so much less than what we routinely encounter there will be no personal effect.

Another way to give you an idea of how small this temperature change consider changes with elevation and latitude. Generally, temperature decreases three (3) degrees Fahrenheit for every 1,000 foot increase in elevation above sea level. The projected temperature difference is the same as going down 27 inches. The general rule is that temperature changes three (3) degrees Fahrenheit for every 300 mile change in latitude at an elevation of sea level. The projected temperature change is the same as going south two thirds of a mile.

Conclusion

I do not think that there is any question why the State has not provided a quantitative estimate of the impact on global warming from CCPA or any other New York State initiative related to climate change. Clearly we can expect no discernable impact. The calculated values provided in this post are based on the “consensus” estimates of the Intergovernmental Panel on Climate Change which I personally believe over-estimate the impact of temperature changes caused by greenhouse gas emissions but do represent the justification for the CCPA. As shown here claiming any observable impacts for the projected small change in temperature due to these emissions reductions is a stretch at best.

NYS Climate and Community Protection Act Rationale

In the 2019-2020 regular sessions the New York State (NYS) legislature is debating the Climate and Community Protection Act (CCPA). This post addresses the claims of increasing severity and frequency of events attributed to climate change in the CCPA rationale.

The bill states:

Climate change is adversely affecting economic well-being, public health, natural resources, and the environment of New York. The adverse impacts of climate change include:

      • an increase in the severity and frequency of extreme weather events, such as storms, flooding, and heat waves, which can cause direct injury or death, property damage, and ecological damage (e.g., through the release of hazardous substances into the environment);
      • rising sea levels, which exacerbate damage from storm surges and flooding, contribute to coastal erosion and saltwater intrusion, and inundate low-lying areas, leading to the displacement of or damage to coastal habitat, property, and infrastructure;
      • a decline in freshwater and saltwater fish populations;
      • increased average temperatures, which increase the demand for air conditioning and refrigeration among residents and businesses;
      • exacerbation of air pollution; and
      • an increase in the incidences of infectious diseases, asthma attacks, heart attacks, and other negative health outcomes.

This rationale is similar to most calls for action. Invariably there is a listing of weather events, claims of increasing severity and frequency, notes that extreme weather causes damages and, finally, insinuations that the proposed action will reduce damage.

When I first started this blog I developed a list of pragmatic environmentalist principles that describe my beliefs. This post illustrates my first principle that there are two sides to environmental issues and my latest principle that arguments about the issue are usually based on how each side interprets conflicting data. In this case the focus on one interpretation obscures the possibility that direct action would likely be a more effective policy alternative than the indirect policy proposed to control greenhouse gas emissions in hopes that will affect one of the drivers of the rationale examples.

Extreme Weather Events

The CCPA claims that climate change is adversely affecting New York now and cites storms, flooding, heat waves and rising sea-levels. If the CCPA were correct then all the occurrence of all these events should be increasing in frequency and intensity. In fact, the data on these extreme weather events are all easily available, and clearly show that there are no increases in any category other than normal fluctuations, and certainly nothing that can be attributed to human influences. Here is a link to a definitive document prepared by Francis Menton compiling evidence in all these categories and others. Judith Curry recently prepared a Special Report on Hurricanes and Climate Change that assesses the current status of hurricanes and climate.

The NY CCPA rationale for extreme weather events echoes the constant barrage of popular media accounts that attribute any unusual weather to climate change but in every instance there are data that indicate otherwise.

Decline in freshwater and saltwater fish populations

One example of the claim that declining fish populations are due to warming seas is the recent paper Impacts of historical warming on marine fisheries production. It states that “temperature-dependent population models to measure the influence of warming on the productivity of 235 populations of 124 species in 38 ecoregions. Some populations responded significantly positively (n = 9 populations) and others responded significantly negatively (n = 19 populations) to warming, with the direction and magnitude of the response explained by ecoregion, taxonomy, life history, and exploitation history. Hindcasts indicate that the maximum sustainable yield of the evaluated populations decreased by 4.1% from 1930 to 2010, with five ecoregions experiencing losses of 15 to 35%.” This description of the study seemingly supports CCPA rationale. It states that the study “looked at the impact of rising ocean temperatures on 124 marine species representing about one-third of the global catch from 1930 to 2010. It found that the “maximum sustainable yield,” or the amount of fish that could be caught each year without jeopardizing future harvests, dropped by 4.1 percent over this period as a result of climate change.”

Actually the study did not say anything nearly as alarming. It looked at 235 populations and found that warming had a positive influence on 9 populations, no influence on 207 populations and a negative influence on 19. Reality is that the 4.1% decrease in maximum sustainable yield only could be attributed to 19 of 235 populations. There is no question that decreasing fish stocks is a serious environmental problem. However the problem is over-whelmingly due to over-fishing “Increased human demand for fish and subsidies for fishing fleets have resulted in too many boats chasing too few fish”.

The NY CCPA rationale does not address the root cause of the decline in fish populations so it is unlikely that the legislation will have any effect on fish populations.

Increased average temperatures

I agree that average temperatures are increasing but I do want to point out that even this relatively uncontroversial statement is complicated. For example, consider the points made about the United States average temperature trend in this video. It shows that if you calculate the trend using the raw data the trend is cooling but recent adjustments have shifted it to warming.

The primary concern for increased temperature is heat waves and the National Weather Service NYC office determined the trend of decadal heat waves that clearly showed an increase in the length of heat waves since 1880. However, I believe that it can be argued that the urban heat island mentioned in the report is a primary driver of the Central Park trend. Trying to determine how much of the temperature and heat wave trend is caused by the greenhouse gas effect (the target of CCPA) compared to land use change and natural variation is a non-trivial task completely ignored by simply claiming that average temperatures are increasing.

Exacerbation of air pollution

The only air pollutant regulated by the Environmental Protection Agency that can possibly be exacerbated by warmer temperatures is ozone. Ozone is a secondary air pollutant created by a complex photo-chemical reaction from nitrogen oxides and volatile organic compounds and that reaction is temperature dependent. However regarding ozone levels, the relative effect of temperature compared to emission rates is small as shown by the fact that New York State ozone concentrations have been decreasing even though temperatures are increasing.

Increased incidences of diseases

The CCPA rationale claims climate change can increase the incidences of infectious diseases, asthma attacks, heart attacks, and other negative health outcomes. According to the World Health Organization report on climate change and infectious diseases it is well known that climatic conditions affect epidemic diseases. That report goes on to state that “Malaria is of great public health concern, and seems likely to be the vector-borne disease most sensitive to long-term climate change”. However, it also is well known that during the construction of the Erie Canal canal fever was a concern, particularly during construction across the Montezuma Marsh.   In fact there were malaria problems even further north in Ontario when the Rideau Canal was built. This article explains that malaria can be controlled by “reducing the numbers of malaria parasites to a point low enough to break the infection cycle.”

The argument for asthma attacks and climate change is that it increases water and air pollution. One study claims that there is an increase in heat-induced heart attack risk in recent years. But they go on to note that “Individuals with diabetes or hyperlipidaemia were particularly at risk over the latter period. The researchers suspect that this is partly a result of global warming, but that it is also a consequence of an increase in risk factors such as diabetes and hyperlipidaemia, which have made the population more susceptible to heat.”

All these examples are similar and the rationale that reducing greenhouse gases will have an effect is flawed.   For malaria the effect of long-term climate change can be mitigated much better by directly breaking the infection cycle than indirectly reduce mosquitos by trying to control temperatures. Directly mitigating air and water pollution is more effective than trying to reduce it by controlling temperature. Finally, directly reducing other heart attack risk factors is likely more effective than indirectly reducing temperature.

Science

Advocates for this legislation and other similar programs in New York State claim that they are all for the science. So am I. There is no question that global temperatures have been warming since the end of the Little Ice Age in the early 1800’s. There also is no question that increased levels of carbon dioxide and other greenhouse gases reduce out-going long-wave radiation and that warming results. Because human activities have added to those gases there is no question in my mind that at least some of the observed warming is very likely due to mankind. The question is how much of the observed warming is due to greenhouse gases relative to other human factors and the natural causes that have driven all previous climatic change. That makes all the difference.

Despite the constant barrage of popular media accounts that simply state that climate change is real and caused by mankind, reality is much more complex and it is not clear that mitigating greenhouse gases will necessarily affect climate change. We do not understand the natural causes of climate variation responsible for historic climate change. If we did understand them then we would be able to predict the weather for the next season, for example how much snow and how much cold. Clearly we don’t.

More importantly, for societal policy there is a trade-off. I tried to show that if we are concerned about the issues in the CCPA rationale that are ascribed to climate change that directly addressing them will likely be more effective than trying to control the climate. Moreover, the Ridley’s Paradox should also be considered: Economic damage from man-made ‘climate change’ is illusory whereas damage from man-made ‘policies’ to fight the said change is real.